Item Details

Fracture Mechanics of Electromagnetic Materials [electronic resource]: Nonlinear Field Theory and Applications

Xiaohong Chen, Yiu-Wing Mai
Format
EBook; Book; Online
Published
London : Imperial College Press, c2013.
Language
English
ISBN
9781848166639, 184816663X
Summary
This volume provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities --
Contents
  • Machine generated contents note: 1.1.Historical Perspective
  • 1.2.Stress Intensity Factors (SIF)
  • 1.3.Energy Release Rate (ERR)
  • 1.4.J-Integral
  • 1.5.Dynamic Fracture
  • 1.6.Viscoelastic Fracture
  • 1.7.Essential Work of Fracture (EWF)
  • 1.8.Configuration Force (Material Force) Method
  • 1.9.Cohesive Zone and Virtual Internal Bond Models
  • 2.1.Notations
  • 2.1.1.Eulerian and Lagrangian descriptions
  • 2.1.2.Electromagnetic field
  • 2.1.3.Electromagnetic body force and couple
  • 2.1.4.Electromagnetic stress tensor and momentum vector
  • 2.1.5.Electromagnetic power
  • 2.1.6.Poynting theorem
  • 2.2.Maxwell Equations
  • 2.3.Balance Equations of Mass, Momentum, Moment of Momentum, and Energy
  • 2.4.Constitutive Relations
  • 2.5.Linearized Theo
  • 3.1.Thermoelasticity
  • 3.2.Viscoelasticity
  • 3.3.Coupled Theory of Thermoviscoelasticity
  • 3.3.1.Fundamental principles of thermodynamics
  • 3.3.2.Formulation based on Helmholtz free energy functional
  • -- Contents note continued: 3.3.3.Formulation based on Gibbs free energy functional
  • 3.4.Thermoviscoelastic Boundary-Initial Value Problems
  • 4.1.Introduction
  • 4.2.Basic Field Equations
  • 4.3.General Solution Procedures
  • 4.4.Debates on Crack-Face Boundary Conditions
  • 4.5.Fracture Criteria
  • 4.5.1.Field intensity factors
  • 4.5.2.Path-independent integral
  • 4.5.3.Mechanical strain energy release rate
  • 4.5.4.Global and local energy release rates
  • 4.6.Experimental Observations
  • 4.6.1.Indentation test
  • 4.6.2.Compact tension test
  • 4.6.3.Bending test
  • 4.7.Nonlinear Studies
  • 4.7.1.Electrostriction/magnetostriction
  • 4.7.2.Polarization/magnetization saturation
  • 4.7.3.Domain switching
  • 4.7.4.Domain wall motion
  • 4.8.Status and Prospects
  • 5.1.Introduction
  • 5.2.Fundamental Principles of Thermodynamics
  • 5.3.Energy Flux and Dynamic Contour Integral
  • 5.4.Dynamic Energy Release Rate Serving as Crack Driving Force
  • -- Contents note continued: 5.5.Configuration Force and Energy-Momentum Tensor
  • 5.6.Coupled Electromechanical Jump/Boundary Conditions
  • 5.7.Asymptotic Near-Tip Field Solution
  • 5.8.Remarks
  • 6.1.Introduction
  • 6.2.Thermodynamic Formulation of Fully Coupled Dynamic Framework
  • 6.2.1.Field equations and jump conditions
  • 6.2.2.Dynamic energy release rate
  • 6.2.3.Invariant integral
  • 6.3.Stroh-Type Formalism for Steady-State Crack Propagation under Coupled Magneto-Electro-Mechanical Jump/Boundary Conditions
  • 6.3.1.Generalized plane crack problem
  • 6.3.2.Steady-state solution
  • 6.3.3.Path-independent integral for steady crack growth
  • 6.4.Magneto-Electro-Elastostatic Crack Problem as a Special Case
  • 6.5.Summary
  • 7.1.Introduction
  • 7.2.Shear Horizontal Surface Waves
  • 7.3.Transient Mode-III Crack Growth Problem
  • 7.4.Integral Transform, Wiener-Hopf Technique, and Cagniard-de Hoop Method
  • 7.5.Fundamental Solutions for Traction Loading Only
  • -- Contents note continued: 7.6.Fundamental Solutions for Mixed Loads
  • 7.7.Evaluation of Dynamic Energy Release Rate
  • 7.8.Influence of Shear Horizontal Surface Wave Speed and Crack Tip Velocity
  • 8.1.Introduction
  • 8.2.Formulation of Boundary-Initial Value Problems
  • 8.3.Basic Solution Techniques
  • 8.4.Fracture Characterizing Parameters
  • 8.4.1.Field intensity factors
  • 8.4.2.Dynamic energy release rate
  • 8.4.3.Path-domain independent integral
  • 8.5.Remarks
  • 9.1.Introduction
  • 9.2.Local Balance Equations for Magnetic, Thermal, and Mechanical Field - Quantities
  • 9.3.Free Energy and Entropy Production Inequality for Memory-Dependent Magnetosensitive Materials
  • 9.4.Coupled Magneto-Thermo-Viscoelastic Constitutive Relations
  • 9.5.Generalized J-Integral in Nonlinear Magneto-Thermo-Viscoelastic Fracture
  • 9.6.Generalized Plane Crack Problem and Revisit of Mode-III Fracture of a Magnetostrictive Solid in a Bias Magnetic Field
  • 10.1.Introduction
  • -- Contents note continued: 10.2.Local Balance Equations for Electric, Thermal, and Mechanical Field Quantities
  • 10.3.Free Energy and Entropy Production Inequality for Memory-Dependent Electrosensitive Materials
  • 10.4.Coupled Electro-Thermo-Viscoelastic Constitutive Relations
  • 10.5.Generalized J -Integral in Nonlinear Electro-Thermo-Viscoelastic Fracture
  • 10.6.Analogy between Nonlinear Magneto- and Electro-Thermo-Viscoelastic Constitutive and Fracture Theories
  • 10.7.Reduction to Dorfmann-Ogden Nonlinear Magneto- and Electro-elasticity
  • 11.1.Introduction
  • 11.2.Global Energy Balance Equation and Non-Negative Global Dissipation Requirement
  • 11.3.Hamiltonian Density and Thermodynamically Admissible Conditions
  • 11.3.1.Generalized functional thermodynamics
  • 11.3.2.Generalized state-variable thermodynamics
  • 11.4.Thermodynamically Consistent Time-Dependent Fracture Criterion
  • 11.5.Generalized Energy Release Rate versus Bulk Dissipation Rate
  • -- Contents note continued: 11.6.Local Generalized J-Integral versus Global Generalized J-Integral
  • 11.7.Essential Work of Fracture versus Nonessential Work of Fracture
  • 12.1.Introduction
  • 12.2.Nonlinear Field Equations
  • 12.2.1.Balance equations
  • 12.2.2.Constitutive laws
  • 12.3.Thermodynamically Consistent Time-Dependent Fracture Criterion
  • 12.4.Correlation with Conventional Fracture Mechanics Approaches
  • 13.1.Introduction
  • 13.2.Energy Release Rate Method and its Generalization
  • 13.3.J-R Curve Method and its Generalization
  • 13.4.Essential Work of Fracture Method and its Extension
  • 13.5.Closure.
Description
Mode of access: World wide Web.
Notes
Includes bibliographical references (p. 276-298) and index.
Logo for Copyright Not EvaluatedCopyright Not Evaluated
Technical Details
  • Access in Virgo Classic

  • LEADER 07315cam a22004697a 4500
    001 u6458685
    003 SIRSI
    005 20170608061650.0
    006 m d
    007 cr n
    008 130611s2013 enka sb 001 0 eng d
    010
      
      
    a| 2012554489
    015
      
      
    a| GBB265466 2| bnb
    016
    7
      
    a| 016118456 2| Uk
    020
      
      
    a| 9781848166639
    020
      
      
    a| 184816663X
    035
      
      
    a| (WaSeSS)ssj0000789185
    040
      
      
    a| AU@ b| eng c| AU@ d| OCLCO d| UTO d| SINTU d| UOH d| DLC d| WaSeSS
    042
      
      
    a| lccopycat
    050
    0
    0
    a| TA409 b| .C4273 2013
    082
    0
    4
    a| 620.1126 2| 23
    100
    1
      
    a| Chen, Xiaohong.
    245
    1
    0
    a| Fracture mechanics of electromagnetic materials h| [electronic resource] : b| nonlinear field theory and applications / c| Xiaohong Chen, Yiu-Wing Mai.
    260
      
      
    a| London : b| Imperial College Press, c| c2013.
    504
      
      
    a| Includes bibliographical references (p. 276-298) and index.
    505
    0
      
    a| Machine generated contents note: 1.1.Historical Perspective -- 1.2.Stress Intensity Factors (SIF) -- 1.3.Energy Release Rate (ERR) -- 1.4.J-Integral -- 1.5.Dynamic Fracture -- 1.6.Viscoelastic Fracture -- 1.7.Essential Work of Fracture (EWF) -- 1.8.Configuration Force (Material Force) Method -- 1.9.Cohesive Zone and Virtual Internal Bond Models -- 2.1.Notations -- 2.1.1.Eulerian and Lagrangian descriptions -- 2.1.2.Electromagnetic field -- 2.1.3.Electromagnetic body force and couple -- 2.1.4.Electromagnetic stress tensor and momentum vector -- 2.1.5.Electromagnetic power -- 2.1.6.Poynting theorem -- 2.2.Maxwell Equations -- 2.3.Balance Equations of Mass, Momentum, Moment of Momentum, and Energy -- 2.4.Constitutive Relations -- 2.5.Linearized Theo -- 3.1.Thermoelasticity -- 3.2.Viscoelasticity -- 3.3.Coupled Theory of Thermoviscoelasticity -- 3.3.1.Fundamental principles of thermodynamics -- 3.3.2.Formulation based on Helmholtz free energy functional --
    505
    0
      
    a| Contents note continued: 3.3.3.Formulation based on Gibbs free energy functional -- 3.4.Thermoviscoelastic Boundary-Initial Value Problems -- 4.1.Introduction -- 4.2.Basic Field Equations -- 4.3.General Solution Procedures -- 4.4.Debates on Crack-Face Boundary Conditions -- 4.5.Fracture Criteria -- 4.5.1.Field intensity factors -- 4.5.2.Path-independent integral -- 4.5.3.Mechanical strain energy release rate -- 4.5.4.Global and local energy release rates -- 4.6.Experimental Observations -- 4.6.1.Indentation test -- 4.6.2.Compact tension test -- 4.6.3.Bending test -- 4.7.Nonlinear Studies -- 4.7.1.Electrostriction/magnetostriction -- 4.7.2.Polarization/magnetization saturation -- 4.7.3.Domain switching -- 4.7.4.Domain wall motion -- 4.8.Status and Prospects -- 5.1.Introduction -- 5.2.Fundamental Principles of Thermodynamics -- 5.3.Energy Flux and Dynamic Contour Integral -- 5.4.Dynamic Energy Release Rate Serving as Crack Driving Force --
    505
    0
      
    a| Contents note continued: 5.5.Configuration Force and Energy-Momentum Tensor -- 5.6.Coupled Electromechanical Jump/Boundary Conditions -- 5.7.Asymptotic Near-Tip Field Solution -- 5.8.Remarks -- 6.1.Introduction -- 6.2.Thermodynamic Formulation of Fully Coupled Dynamic Framework -- 6.2.1.Field equations and jump conditions -- 6.2.2.Dynamic energy release rate -- 6.2.3.Invariant integral -- 6.3.Stroh-Type Formalism for Steady-State Crack Propagation under Coupled Magneto-Electro-Mechanical Jump/Boundary Conditions -- 6.3.1.Generalized plane crack problem -- 6.3.2.Steady-state solution -- 6.3.3.Path-independent integral for steady crack growth -- 6.4.Magneto-Electro-Elastostatic Crack Problem as a Special Case -- 6.5.Summary -- 7.1.Introduction -- 7.2.Shear Horizontal Surface Waves -- 7.3.Transient Mode-III Crack Growth Problem -- 7.4.Integral Transform, Wiener-Hopf Technique, and Cagniard-de Hoop Method -- 7.5.Fundamental Solutions for Traction Loading Only --
    505
    0
      
    a| Contents note continued: 7.6.Fundamental Solutions for Mixed Loads -- 7.7.Evaluation of Dynamic Energy Release Rate -- 7.8.Influence of Shear Horizontal Surface Wave Speed and Crack Tip Velocity -- 8.1.Introduction -- 8.2.Formulation of Boundary-Initial Value Problems -- 8.3.Basic Solution Techniques -- 8.4.Fracture Characterizing Parameters -- 8.4.1.Field intensity factors -- 8.4.2.Dynamic energy release rate -- 8.4.3.Path-domain independent integral -- 8.5.Remarks -- 9.1.Introduction -- 9.2.Local Balance Equations for Magnetic, Thermal, and Mechanical Field - Quantities -- 9.3.Free Energy and Entropy Production Inequality for Memory-Dependent Magnetosensitive Materials -- 9.4.Coupled Magneto-Thermo-Viscoelastic Constitutive Relations -- 9.5.Generalized J-Integral in Nonlinear Magneto-Thermo-Viscoelastic Fracture -- 9.6.Generalized Plane Crack Problem and Revisit of Mode-III Fracture of a Magnetostrictive Solid in a Bias Magnetic Field -- 10.1.Introduction --
    505
    0
      
    a| Contents note continued: 10.2.Local Balance Equations for Electric, Thermal, and Mechanical Field Quantities -- 10.3.Free Energy and Entropy Production Inequality for Memory-Dependent Electrosensitive Materials -- 10.4.Coupled Electro-Thermo-Viscoelastic Constitutive Relations -- 10.5.Generalized J -Integral in Nonlinear Electro-Thermo-Viscoelastic Fracture -- 10.6.Analogy between Nonlinear Magneto- and Electro-Thermo-Viscoelastic Constitutive and Fracture Theories -- 10.7.Reduction to Dorfmann-Ogden Nonlinear Magneto- and Electro-elasticity -- 11.1.Introduction -- 11.2.Global Energy Balance Equation and Non-Negative Global Dissipation Requirement -- 11.3.Hamiltonian Density and Thermodynamically Admissible Conditions -- 11.3.1.Generalized functional thermodynamics -- 11.3.2.Generalized state-variable thermodynamics -- 11.4.Thermodynamically Consistent Time-Dependent Fracture Criterion -- 11.5.Generalized Energy Release Rate versus Bulk Dissipation Rate --
    505
    0
      
    a| Contents note continued: 11.6.Local Generalized J-Integral versus Global Generalized J-Integral -- 11.7.Essential Work of Fracture versus Nonessential Work of Fracture -- 12.1.Introduction -- 12.2.Nonlinear Field Equations -- 12.2.1.Balance equations -- 12.2.2.Constitutive laws -- 12.3.Thermodynamically Consistent Time-Dependent Fracture Criterion -- 12.4.Correlation with Conventional Fracture Mechanics Approaches -- 13.1.Introduction -- 13.2.Energy Release Rate Method and its Generalization -- 13.3.J-R Curve Method and its Generalization -- 13.4.Essential Work of Fracture Method and its Extension -- 13.5.Closure.
    520
    8
      
    a| This volume provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities -- c| Source other than Library of Congress.
    538
      
      
    a| Mode of access: World wide Web.
    650
      
    0
    a| Magnetic materials x| Fracture.
    650
      
    0
    a| Fracture mechanics x| Mathematics.
    650
      
    0
    a| Nonlinear theories.
    655
      
    0
    a| Electronic books.
    700
    1
      
    a| Mai, Y. W., d| 1946-
    710
    2
      
    a| Ebook Central - Academic Complete
    856
    4
    0
    u| http://RE5QY4SB7X.search.serialssolutions.com/?V=1.0&L=RE5QY4SB7X&S=JCs&C=TC0000789185&T=marc
    596
      
      
    a| 1
    999
      
      
    a| XX(6458685.1) w| WEB i| 6458685-1001 l| INTERNET m| UVA-LIB t| INTERNET

Availability

Google Preview

Read Online