Item Details

Print View

Semiconductor Quantum Optics [electronic resource]

Mackillo Kira and Stephan W. Koch
Format
EBook; Book; Online
Published
Cambridge ; New York : Cambridge University Press, 2012.
Language
English
ISBN
9780521875097 (hardback)
Summary
"The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097"--
"The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance.In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered"--
Contents
Machine generated contents note: 1. Central concepts in classical mechanics; 2. Central concepts of classical electrodynamics; 3. Central concepts in quantum mechanics; 4. Central concepts in stationary quantum theory; 5. Central concepts in measurement theory; 6. Wigner's phase-space representation; 7. Hamiltonian formulation of classical electrodynamics; 8. System Hamiltonian of classical electrodynamics; 9. System Hamiltonian in the generalized Coulomb gauge; 10. Quantization of light and matter; 11. Quasiparticles in semiconductors; 12. Band structure of solids; 13. Interactions in semiconductors; 14. Generic quantum dynamics; 15. Cluster-expansion representation of the quantum dynamics; 16. Simple many-body systems; 17. Hierarchy problem for dipole systems; 18. Two-level approximation for optical transition; 19. Self-consistent extension of the two-level approach; 20. Dissipative extension of the two-level approach; 21. Quantum-optical extension of the two-level approach; 22. Quantum dynamics of two-level system; 23. Spectroscopy and quantum-optical correlations; 24. General aspects of semiconductor optics; 25. Introductory semiconductor optics; 26. Maxwell-semiconductor Bloch equations; 27. Coherent vs. incoherent excitons; 28. Semiconductor luminescence equations; 29. Many-body aspects of the semiconductor luminescence; 30. Advanced semiconductor quantum optics; Appendix; Index.
Description
Mode of access: World wide Web.
Notes
Includes bibliographical reference and index.
Copyright Not EvaluatedCopyright Not Evaluated
Technical Details
  • Access in Virgo Classic
  • Staff View

    LEADER 04825cam a2200397 a 4500
    001 u5739207
    003 SIRSI
    005 20161010103022.0
    006 m d
    007 cr n
    008 110617s2012 enka sb 001 0 eng d
    010
      
      
    a| 2011025901
    020
      
      
    a| 9780521875097 (hardback)
    035
      
      
    a| (WaSeSS)ssj0000571271
    040
      
      
    a| DLC c| DLC d| DLC d| WaSeSS
    042
      
      
    a| pcc
    050
    0
    0
    a| QC611.6.Q36 b| K57 2012
    082
    0
    0
    a| 621.3815/2 2| 23
    084
      
      
    a| SCI055000 2| bisacsh
    100
    1
      
    a| Kira, Mackillo, d| 1969-
    245
    1
    0
    a| Semiconductor quantum optics h| [electronic resource] / c| Mackillo Kira and Stephan W. Koch.
    260
      
      
    a| Cambridge ; a| New York : b| Cambridge University Press, c| 2012.
    504
      
      
    a| Includes bibliographical reference and index.
    505
    8
      
    a| Machine generated contents note: 1. Central concepts in classical mechanics; 2. Central concepts of classical electrodynamics; 3. Central concepts in quantum mechanics; 4. Central concepts in stationary quantum theory; 5. Central concepts in measurement theory; 6. Wigner's phase-space representation; 7. Hamiltonian formulation of classical electrodynamics; 8. System Hamiltonian of classical electrodynamics; 9. System Hamiltonian in the generalized Coulomb gauge; 10. Quantization of light and matter; 11. Quasiparticles in semiconductors; 12. Band structure of solids; 13. Interactions in semiconductors; 14. Generic quantum dynamics; 15. Cluster-expansion representation of the quantum dynamics; 16. Simple many-body systems; 17. Hierarchy problem for dipole systems; 18. Two-level approximation for optical transition; 19. Self-consistent extension of the two-level approach; 20. Dissipative extension of the two-level approach; 21. Quantum-optical extension of the two-level approach; 22. Quantum dynamics of two-level system; 23. Spectroscopy and quantum-optical correlations; 24. General aspects of semiconductor optics; 25. Introductory semiconductor optics; 26. Maxwell-semiconductor Bloch equations; 27. Coherent vs. incoherent excitons; 28. Semiconductor luminescence equations; 29. Many-body aspects of the semiconductor luminescence; 30. Advanced semiconductor quantum optics; Appendix; Index.
    520
      
      
    a| "The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097"-- c| Provided by publisher.
    520
      
      
    a| "The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance.In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered"-- c| Provided by publisher.
    538
      
      
    a| Mode of access: World wide Web.
    650
      
    0
    a| Semiconductors.
    650
      
    0
    a| Quantum optics.
    650
      
    0
    a| Quantum electrodynamics.
    655
      
    0
    a| Electronic books.
    700
    1
      
    a| Koch, S. W. q| (Stephan W.)
    710
    2
      
    a| Knovel, Academic, Electronics & Semiconductors
    856
    4
    0
    u| http://RE5QY4SB7X.search.serialssolutions.com/?V=1.0&L=RE5QY4SB7X&S=JCs&C=TC0000571271&T=marc
    596
      
      
    a| 1
    999
      
      
    a| XX(5739207.1) w| WEB i| 5739207-1001 l| INTERNET m| UVA-LIB t| INTERNET
▾See more
▴See less

Availability

Google Preview

Google Books Preview

Read Online