Item Details

The Technology of Catalytic Oxidations

Philippe Arpentinier, Fabrizio Cavani, Ferrucio Triferò
Format
Book
Published
Paris : Technip, 2001.
Language
English
ISBN
2710807777 (complete ed.), 2710807939 (v. 1), 2710807947 (v. 2)
Contents
  • Volume 1 Chemical, catalytic and engineering aspects
  • 1.1 Generalities 1
  • 1.2 Oxygen production technologies 3
  • 1.3 Oxygen industrial applications: air or oxygen for oxidations? 7
  • 1.4 Economic aspects 13
  • Chapter 2 Chemical-Physical Properties of Molecular Oxygen 17
  • Chapter 3 Oxygen Production Technologies 23
  • 3.2 Oxygen production technologies 26
  • 3.2.1 Cryogenic air separation processes 27
  • 3.2.2 Adsorptive air separation processes 48
  • 3.2.3 Comparison of air separation technologies to produce oxygen 60
  • 3.3 Distribution of oxygen 62
  • Chapter 4 Chemical Fundamentals of Oxidation Reactions 67
  • 4.1 Reduction of molecular oxygen 67
  • 4.2 Photo-induced activation of molecular oxygen 71
  • 4.3 Interaction between molecular oxygen and transition metal ions 76
  • 4.4 Oxygen adsorption in metal complexes of relevance for biochemistry 82
  • 4.5 Mechanisms of homogeneous gas phase oxidation of hydrocarbons by molecular oxygen 85
  • 4.6 Liquid phase homogeneous metal-catalyzed oxidations by molecular oxygen 93
  • 4.6.1 Metal oxo species, formed by interaction with peroxides and molecular oxygen 95
  • 4.6.2 Metal peroxo species 98
  • 4.6.3 Metal-centered oxidation of coordinated substrates 103
  • 4.7 Kinetics of liquid phase oxidation of hydrocarbons 104
  • 4.8 Kinetics of gas phase heterogeneous oxidation of hydrocarbons 109
  • Chapter 5 Reactor Technologies for Multiphase Systems 121
  • 5.2 Multiphase gas-liquid-(solid) systems 122
  • 5.2.1 Multiphase reactors for gas-liquid-(solid) systems 122
  • 5.2.2 Hydrodynamic regimes in gas-liquid and gas-liquid-solid systems 127
  • 5.2.3 Slurry reactors 131
  • 5.2.4 Fixed-bed reactors 144
  • 5.3 Multiphase gas-solid systems 146
  • 5.3.1 Multiphase reactors for gas-solid systems 146
  • 5.3.2 Membrane reactors 160
  • 5.3.3 Monolith reactors 164
  • 5.4 New designs for multiphase reactors 169
  • 5.5 Mass transfer in multiphase reactors 171
  • 5.6 Thermal effects in liquid phase and gas phase oxidations 176
  • 5.7 Selection of the reactor and the reaction strategy for an oxidation process 187
  • 5.8 Choice of operating conditions in the selective oxidation of hydrocarbons 194
  • Chapter 6 Liquid Phase Oxidations 213
  • 6.2 Free-radical chain oxidations 214
  • 6.2.1 Industrial processes 214
  • 6.2.2 Mechanism of autoxidation and kinetic considerations 216
  • 6.2.3 Role of the catalyst 218
  • 6.2.4 Reaction conditions and reactor types 221
  • 6.2.5 Control of selectivity 222
  • 6.2.6 Molecular oxygen or air as the oxidizing agent 223
  • 6.3 Main industrial processes of liquid phase oxidation 224
  • 6.3.1 Autoxidation processes 224
  • 6.3.2 Oxidations with oxygen-transfer agents 231
  • 6.3.3 Redox processes 235
  • Chapter 7 Gas Phase Selective Oxidation 239
  • 7.2 Oxidative dehydrogenation of methanol to formaldehyde 241
  • 7.3 Oxidation of ethylene to ethylene oxide 245
  • 7.4 Oxidation of propylene to acrolein and of acrolein to acrylic acid 253
  • 7.5 Oxychlorination of ethylene to 1,2-dichloroethane 256
  • 7.5.1 General considerations 256
  • 7.5.2 Fluidized-bed process 259
  • 7.5.3 Fixed-bed process 261
  • 7.5.4 Thermodynamics and kinetics of ethylene oxychlorination 263
  • 7.5.5 Selectivity and yields in ethylene oxychlorination 265
  • 7.5.6 Air versus oxygen 266
  • 7.5.7 Control of gas-phase composition with oxygen-based operation 269
  • Chapter 8 Selective Oxidation of Paraffins 275
  • 8.1 General aspects 275
  • 8.2 Process and reactor configurations for paraffins oxidation 283
  • 8.3 Feedstock composition in the oxidation of paraffins 285
  • 8.4 Industrial processes and processes under study or development for the gas phase, heterogeneously-catalyzed selective oxidation of light paraffins 287
  • 8.4.1 Oxidation of methane to syngas 287
  • 8.4.2 Ammoxidationf of propane to acrylonitrile 291
  • 8.4.3 Oxidation of propane to acrolein and to acrylic acid 296
  • 8.4.4 Oxidation of n-butane to maleic anhydride 298
  • 8.4.5 Oxidation of isobutane to methacrylic acid 304
  • 8.4.6 Oxidation of n-pentane to maleic and phthalic anhydrides 307
  • 8.4.7 Oxidehydrogenation of paraffins to olefins 309
  • Volume 2 Safety aspects
  • Chapter 9 Introduction to Safety Problems in the Chemical Industry 325
  • 9.2 Combustion and explosions: types and characteristics 328
  • 9.2.2 Homogeneous chemical explosions 332
  • 9.2.3 Heterogeneous chemical explosions 334
  • 9.3 Estimating and characterizing the notion of risk 336
  • 9.3.1 Sensitivity of a system to explosion 337
  • 9.3.2 Severity or violence of an explosion 339
  • Chapter 10 Chemical Aspects of Combustion in the Gaseous Phase 343
  • 10.1 Reaction mechanism of combustion 343
  • 10.2 Kinetic aspects of chain reactions 346
  • 10.3 Evolution of a combustion reaction 348
  • 10.4 Thermodynamic aspects of combustion 349
  • 10.4.2 Calculation of the adiabatic temperature of perfect combustion 351
  • Chapter 11 Homogeneous Chemical Explosions: Auto-Ignition or Spontaneous Ignition 367
  • 11.2 Various types of autoignition 369
  • 11.3 Theoretical autoignition studies 370
  • 11.3.1 Thermal theory 370
  • 11.3.2 Radical-producing chain reaction theory 377
  • 11.4 Autoignition temperature and pressure 380
  • 11.4.1 Experimental studies 380
  • 11.4.2 Influence of the nature of the gaseous mixture (equivalence ratio, dilution and composition) 394
  • 11.4.3 Influence of the vessel and hydrodynamic conditions 404
  • 11.5 Ignition delay 409
  • 11.6 A neglected phenomenon: detonating autoignition 411
  • 11.7 Application to safety in the chemical industry 413
  • 11.7.2 Autoignition by contact with a hot surface 415
  • 11.7.3 Autoignition caused by rapid compression or shock wave 418
  • 11.7.4 Case of catalytic oxidation processes 422
  • Chapter 12 Deflagration or Propagation of Flame 437
  • 12.2 Fundamental velocity and flame propagation velocity 439
  • 12.2.1 Description of the phenomenon of flame deflagration and definitions 439
  • 12.2.2 Theoretical study of deflagration 444
  • 12.2.3 Experimental determination of fundamental velocity 448
  • 12.3 Variation of fundamental velocity as a function of physical and chemical properties of the flammable mixture 452
  • 12.3.1 Influence of the initial temperature on fundamental velocity 452
  • 12.3.2 Influence of pressure on fundamental velocity 454
  • 12.3.3 Influence of the equivalence ratio on the fundamental velocity 455
  • 12.3.4 Influence of dilution on fundamental velocity 457
  • 12.3.5 Influence of thermal diffusion and specific heat 458
  • 12.3.6 Influence of the nature of reactants on fundamental velocity 459
  • 12.3.7 Influence of turbulence on flame propagation 461
  • Chapter 13 Conditions Governing Flame Propagation Capability 471
  • 13.2 Flammability limit theories: history 478
  • 13.3 Various processes of extinction of a laminar flame 482
  • 13.3.1 Extinction caused by free convection and flame stretching 483
  • 13.3.2 Extinction by wall effects (thermal losses by convection and conduction) 488
  • 13.3.3 Extinction due to losses by radiation 491
  • 13.3.4 Effect of preferential diffusion on flame extinction 494
  • 13.4 Minimum ignition energy and the ignition of flammable mixtures 501
  • 13.4.1 Ignition of a flammable mixture by an electric spark 506
  • 13.4.2 Effect of equivalence ratio, mixture dilution and chemical nature of fuel on minimum ignition energy 508
  • 13.4.3 Effect of initial temperature and pressure on a mixture's minimum ignition energy 512
  • 13.4.4 Effect of turbulence on the minimum ignition energy of a given mixture 513
  • 13.5 Flammability limits 516
  • 13.5.1 Experimental methods of determiningm flammability limits 516
  • 13.5.2 Estimation of flammability limits: predictive methods, empirical relations and group contribution methods 535
  • 13.5.3 Effect of the acceleration field on flammability limits 562
  • 13.5.4 Effect of temperature on flammability limits 566
  • 13.5.5 Effect of pressure on flammability limits 575
  • 13.5.6 Effect of inert gases on flammability limits 582
  • 13.5.7 Effect of inhibitors and promoters on flammability limits 602
  • 13.5.8 Case of liquid fuels 611
  • 13.6 Flame quenching by cold wall and wall effects 621
  • 13.6.1 Quenching diameter and distance 621
  • 13.6.2 Thermal extinction of flame by inert particles 640
  • 13.7 Effect of turbulence on flame extinction 646
  • Chapter 14 Detonation in the Gaseous Phase 671
  • 14.1 Description and mechanism of detonation 671
  • 14.2 Theoretical studies of detonation wave 676
  • 14.3 Detonation propagation velocity 679
  • 14.4 Detonability limits 685
  • 14.5 Triggering of detonation 690
  • 14.5.1 Direct triggering 690
  • 14.5.2 Spontaneous triggering: detonating autoignition 692
  • 14.5.3 Triggering by deflagration: the mechanism of deflagration-to-detonation transition (DDT) 692
  • Chapter 15 Prevention of and Protection Against Explosions 701
  • 15.1.1 Risk analysis 702
  • 15.1.2 Risk control: general approach 705
  • 15.1.3 Design of an intrinsically safety process 706
  • 15.2 Prevention of explosions 707
  • 15.2.1 Prevention by intensification 708
  • 15.2.2 Prevention by substitution 709
  • 15.2.3 Prevention by attenuation 709
  • 15.2.4 Prevention by simplification and error-tolerant design 712
  • 15.2.5 Identification and control of ignition sources 713
  • 15.3 Explosion protection: limiting of effects 723
  • 15.3.1 Containment 727
  • 15.3.2 Explosion venting 729
  • 15.3.3 Explosion suppression 742
  • -- 15.3.4 Explosion isolation 747.
Description
2 v. (xxxi, 764 p.) : ill. ; 25 cm.
Notes
Includes bibliographical references and index.
Technical Details
  • Access in Virgo Classic

  • LEADER 11299cam a2200433 a 4500
    001 u3737123
    003 SIRSI
    005 20010628130127.0
    008 010525s2001 fr a b 001 0 eng
    010
      
      
    a| 2001381380
    020
      
      
    a| 2710807777 (complete ed.)
    020
      
      
    a| 2710807939 (v. 1)
    020
      
      
    a| 2710807947 (v. 2)
    035
      
      
    a| (Sirsi) i9782710807773
    035
      
      
    a| (Sirsi) i2710807777
    035
      
      
    a| (OCoLC)47136883
    040
      
      
    a| DLC c| DLC d| DLC d| MvI
    042
      
      
    a| pcc
    050
    0
    0
    a| TP690.4 b| .A76 2001
    082
    0
    0
    a| 665.5/33 2| 21
    090
      
      
    a| CHEM/TP690.4 b| .A76 2001
    100
    1
      
    a| Arpentinier, Philippe.
    245
    1
    4
    a| The technology of catalytic oxidations / c| Philippe Arpentinier, Fabrizio Cavani, Ferrucio Triferò.
    260
      
      
    a| Paris : b| Technip, c| 2001.
    300
      
      
    a| 2 v. (xxxi, 764 p.) : b| ill. ; c| 25 cm.
    504
      
      
    a| Includes bibliographical references and index.
    505
    0
    0
    g| Volume 1 t| Chemical, catalytic and engineering aspects -- g| 1.1 t| Generalities g| 1 -- g| 1.2 t| Oxygen production technologies g| 3 -- g| 1.3 t| Oxygen industrial applications: air or oxygen for oxidations? g| 7 -- g| 1.4 t| Economic aspects g| 13 -- g| Chapter 2 t| Chemical-Physical Properties of Molecular Oxygen g| 17 -- g| Chapter 3 t| Oxygen Production Technologies g| 23 -- g| 3.2 t| Oxygen production technologies g| 26 -- g| 3.2.1 t| Cryogenic air separation processes g| 27 -- g| 3.2.2 t| Adsorptive air separation processes g| 48 -- g| 3.2.3 t| Comparison of air separation technologies to produce oxygen g| 60 -- g| 3.3 t| Distribution of oxygen g| 62 -- g| Chapter 4 t| Chemical Fundamentals of Oxidation Reactions g| 67 -- g| 4.1 t| Reduction of molecular oxygen g| 67 -- g| 4.2 t| Photo-induced activation of molecular oxygen g| 71 -- g| 4.3 t| Interaction between molecular oxygen and transition metal ions g| 76 -- g| 4.4 t| Oxygen adsorption in metal complexes of relevance for biochemistry g| 82 -- g| 4.5 t| Mechanisms of homogeneous gas phase oxidation of hydrocarbons by molecular oxygen g| 85 -- g| 4.6 t| Liquid phase homogeneous metal-catalyzed oxidations by molecular oxygen g| 93 -- g| 4.6.1 t| Metal oxo species, formed by interaction with peroxides and molecular oxygen g| 95 -- g| 4.6.2 t| Metal peroxo species g| 98 -- g| 4.6.3 t| Metal-centered oxidation of coordinated substrates g| 103 -- g| 4.7 t| Kinetics of liquid phase oxidation of hydrocarbons g| 104 -- g| 4.8 t| Kinetics of gas phase heterogeneous oxidation of hydrocarbons g| 109 -- g| Chapter 5 t| Reactor Technologies for Multiphase Systems g| 121 -- g| 5.2 t| Multiphase gas-liquid-(solid) systems g| 122 -- g| 5.2.1 t| Multiphase reactors for gas-liquid-(solid) systems g| 122 -- g| 5.2.2 t| Hydrodynamic regimes in gas-liquid and gas-liquid-solid systems g| 127 -- g| 5.2.3 t| Slurry reactors g| 131 -- g| 5.2.4 t| Fixed-bed reactors g| 144 -- g| 5.3 t| Multiphase gas-solid systems g| 146 -- g| 5.3.1 t| Multiphase reactors for gas-solid systems g| 146 -- g| 5.3.2 t| Membrane reactors g| 160 -- g| 5.3.3 t| Monolith reactors g| 164 -- g| 5.4 t| New designs for multiphase reactors g| 169 -- g| 5.5 t| Mass transfer in multiphase reactors g| 171 -- g| 5.6 t| Thermal effects in liquid phase and gas phase oxidations g| 176 -- g| 5.7 t| Selection of the reactor and the reaction strategy for an oxidation process g| 187 -- g| 5.8 t| Choice of operating conditions in the selective oxidation of hydrocarbons g| 194 -- g| Chapter 6 t| Liquid Phase Oxidations g| 213 -- g| 6.2 t| Free-radical chain oxidations g| 214 -- g| 6.2.1 t| Industrial processes g| 214 -- g| 6.2.2 t| Mechanism of autoxidation and kinetic considerations g| 216 -- g| 6.2.3 t| Role of the catalyst g| 218 -- g| 6.2.4 t| Reaction conditions and reactor types g| 221 -- g| 6.2.5 t| Control of selectivity g| 222 -- g| 6.2.6 t| Molecular oxygen or air as the oxidizing agent g| 223 -- g| 6.3 t| Main industrial processes of liquid phase oxidation g| 224 -- g| 6.3.1 t| Autoxidation processes g| 224 -- g| 6.3.2 t| Oxidations with oxygen-transfer agents g| 231 -- g| 6.3.3 t| Redox processes g| 235 -- g| Chapter 7 t| Gas Phase Selective Oxidation g| 239 -- g| 7.2 t| Oxidative dehydrogenation of methanol to formaldehyde g| 241 -- g| 7.3 t| Oxidation of ethylene to ethylene oxide g| 245 -- g| 7.4 t| Oxidation of propylene to acrolein and of acrolein to acrylic acid g| 253 -- g| 7.5 t| Oxychlorination of ethylene to 1,2-dichloroethane g| 256 -- g| 7.5.1 t| General considerations g| 256 -- g| 7.5.2 t| Fluidized-bed process g| 259 -- g| 7.5.3 t| Fixed-bed process g| 261 -- g| 7.5.4 t| Thermodynamics and kinetics of ethylene oxychlorination g| 263 -- g| 7.5.5 t| Selectivity and yields in ethylene oxychlorination g| 265 -- g| 7.5.6 t| Air versus oxygen g| 266 -- g| 7.5.7 t| Control of gas-phase composition with oxygen-based operation g| 269 -- g| Chapter 8 t| Selective Oxidation of Paraffins g| 275 -- g| 8.1 t| General aspects g| 275 -- g| 8.2 t| Process and reactor configurations for paraffins oxidation g| 283 -- g| 8.3 t| Feedstock composition in the oxidation of paraffins g| 285 -- g| 8.4 t| Industrial processes and processes under study or development for the gas phase, heterogeneously-catalyzed selective oxidation of light paraffins g| 287 -- g| 8.4.1 t| Oxidation of methane to syngas g| 287 -- g| 8.4.2 t| Ammoxidationf of propane to acrylonitrile g| 291 -- g| 8.4.3 t| Oxidation of propane to acrolein and to acrylic acid g| 296 -- g| 8.4.4 t| Oxidation of n-butane to maleic anhydride g| 298 -- g| 8.4.5 t| Oxidation of isobutane to methacrylic acid g| 304 -- g| 8.4.6 t| Oxidation of n-pentane to maleic and phthalic anhydrides g| 307 -- g| 8.4.7 t| Oxidehydrogenation of paraffins to olefins g| 309 -- g| Volume 2 t| Safety aspects -- g| Chapter 9 t| Introduction to Safety Problems in the Chemical Industry g| 325 -- g| 9.2 t| Combustion and explosions: types and characteristics g| 328 -- g| 9.2.2 t| Homogeneous chemical explosions g| 332 -- g| 9.2.3 t| Heterogeneous chemical explosions g| 334 -- g| 9.3 t| Estimating and characterizing the notion of risk g| 336 -- g| 9.3.1 t| Sensitivity of a system to explosion g| 337 -- g| 9.3.2 t| Severity or violence of an explosion g| 339 -- g| Chapter 10 t| Chemical Aspects of Combustion in the Gaseous Phase g| 343 -- g| 10.1 t| Reaction mechanism of combustion g| 343 -- g| 10.2 t| Kinetic aspects of chain reactions g| 346 -- g| 10.3 t| Evolution of a combustion reaction g| 348 -- g| 10.4 t| Thermodynamic aspects of combustion g| 349 -- g| 10.4.2 t| Calculation of the adiabatic temperature of perfect combustion g| 351 -- g| Chapter 11 t| Homogeneous Chemical Explosions: Auto-Ignition or Spontaneous Ignition g| 367 -- g| 11.2 t| Various types of autoignition g| 369 -- g| 11.3 t| Theoretical autoignition studies g| 370 -- g| 11.3.1 t| Thermal theory g| 370 -- g| 11.3.2 t| Radical-producing chain reaction theory g| 377 -- g| 11.4 t| Autoignition temperature and pressure g| 380 -- g| 11.4.1 t| Experimental studies g| 380 -- g| 11.4.2 t| Influence of the nature of the gaseous mixture (equivalence ratio, dilution and composition) g| 394 -- g| 11.4.3 t| Influence of the vessel and hydrodynamic conditions g| 404 -- g| 11.5 t| Ignition delay g| 409 -- g| 11.6 t| A neglected phenomenon: detonating autoignition g| 411 -- g| 11.7 t| Application to safety in the chemical industry g| 413 -- g| 11.7.2 t| Autoignition by contact with a hot surface g| 415 -- g| 11.7.3 t| Autoignition caused by rapid compression or shock wave g| 418 -- g| 11.7.4 t| Case of catalytic oxidation processes g| 422 -- g| Chapter 12 t| Deflagration or Propagation of Flame g| 437 -- g| 12.2 t| Fundamental velocity and flame propagation velocity g| 439 -- g| 12.2.1 t| Description of the phenomenon of flame deflagration and definitions g| 439 -- g| 12.2.2 t| Theoretical study of deflagration g| 444 -- g| 12.2.3 t| Experimental determination of fundamental velocity g| 448 -- g| 12.3 t| Variation of fundamental velocity as a function of physical and chemical properties of the flammable mixture g| 452 -- g| 12.3.1 t| Influence of the initial temperature on fundamental velocity g| 452 -- g| 12.3.2 t| Influence of pressure on fundamental velocity g| 454 -- g| 12.3.3 t| Influence of the equivalence ratio on the fundamental velocity g| 455 -- g| 12.3.4 t| Influence of dilution on fundamental velocity g| 457 -- g| 12.3.5 t| Influence of thermal diffusion and specific heat g| 458 -- g| 12.3.6 t| Influence of the nature of reactants on fundamental velocity g| 459 -- g| 12.3.7 t| Influence of turbulence on flame propagation g| 461 -- g| Chapter 13 t| Conditions Governing Flame Propagation Capability g| 471 -- g| 13.2 t| Flammability limit theories: history g| 478 -- g| 13.3 t| Various processes of extinction of a laminar flame g| 482 -- g| 13.3.1 t| Extinction caused by free convection and flame stretching g| 483 -- g| 13.3.2 t| Extinction by wall effects (thermal losses by convection and conduction) g| 488 -- g| 13.3.3 t| Extinction due to losses by radiation g| 491 -- g| 13.3.4 t| Effect of preferential diffusion on flame extinction g| 494 -- g| 13.4 t| Minimum ignition energy and the ignition of flammable mixtures g| 501 -- g| 13.4.1 t| Ignition of a flammable mixture by an electric spark g| 506 -- g| 13.4.2 t| Effect of equivalence ratio, mixture dilution and chemical nature of fuel on minimum ignition energy g| 508 -- g| 13.4.3 t| Effect of initial temperature and pressure on a mixture's minimum ignition energy g| 512 -- g| 13.4.4 t| Effect of turbulence on the minimum ignition energy of a given mixture g| 513 -- g| 13.5 t| Flammability limits g| 516 -- g| 13.5.1 t| Experimental methods of determiningm flammability limits g| 516 -- g| 13.5.2 t| Estimation of flammability limits: predictive methods, empirical relations and group contribution methods g| 535 -- g| 13.5.3 t| Effect of the acceleration field on flammability limits g| 562 -- g| 13.5.4 t| Effect of temperature on flammability limits g| 566 -- g| 13.5.5 t| Effect of pressure on flammability limits g| 575 -- g| 13.5.6 t| Effect of inert gases on flammability limits g| 582 -- g| 13.5.7 t| Effect of inhibitors and promoters on flammability limits g| 602 -- g| 13.5.8 t| Case of liquid fuels g| 611 -- g| 13.6 t| Flame quenching by cold wall and wall effects g| 621 -- g| 13.6.1 t| Quenching diameter and distance g| 621 -- g| 13.6.2 t| Thermal extinction of flame by inert particles g| 640 -- g| 13.7 t| Effect of turbulence on flame extinction g| 646 -- g| Chapter 14 t| Detonation in the Gaseous Phase g| 671 -- g| 14.1 t| Description and mechanism of detonation g| 671 -- g| 14.2 t| Theoretical studies of detonation wave g| 676 -- g| 14.3 t| Detonation propagation velocity g| 679 -- g| 14.4 t| Detonability limits g| 685 -- g| 14.5 t| Triggering of detonation g| 690 -- g| 14.5.1 t| Direct triggering g| 690 -- g| 14.5.2 t| Spontaneous triggering: detonating autoignition g| 692 -- g| 14.5.3 t| Triggering by deflagration: the mechanism of deflagration-to-detonation transition (DDT) g| 692 -- g| Chapter 15 t| Prevention of and Protection Against Explosions g| 701 -- g| 15.1.1 t| Risk analysis g| 702 -- g| 15.1.2 t| Risk control: general approach g| 705 -- g| 15.1.3 t| Design of an intrinsically safety process g| 706 -- g| 15.2 t| Prevention of explosions g| 707 -- g| 15.2.1 t| Prevention by intensification g| 708 -- g| 15.2.2 t| Prevention by substitution g| 709 -- g| 15.2.3 t| Prevention by attenuation g| 709 -- g| 15.2.4 t| Prevention by simplification and error-tolerant design g| 712 -- g| 15.2.5 t| Identification and control of ignition sources g| 713 -- g| 15.3 t| Explosion protection: limiting of effects g| 723 -- g| 15.3.1 t| Containment g| 727 -- g| 15.3.2 t| Explosion venting g| 729 -- g| 15.3.3 t| Explosion suppression g| 742 --
    505
    8
    0
    g| 15.3.4 t| Explosion isolation g| 747.
    596
      
      
    a| 14
    650
      
    0
    a| Hydrocarbons x| Oxidation.
    650
      
    0
    a| Catalytic cracking.
    650
      
    0
    a| Catalytic cracking x| Safety measures.
    700
    1
      
    a| Cavani, Fabrizio.
    700
    1
      
    a| Triferò, Ferrucio.
    852
      
      
    b| IVY c| BY-REQUEST
    866
      
    0
    8| 1 a| v.1-2
    999
      
      
    a| TP690.4 .A76 2001 v.1 w| MONO-SER i| X004523003 l| BY-REQUEST m| IVY t| BOOK
    999
      
      
    a| TP690.4 .A76 2001 v.2 w| MONO-SER i| X004523002 l| BY-REQUEST m| IVY t| BOOK

Availability

Google Preview

Ivy

Ivy Stacks
v.1-2
Library Location Map Availability Call Number
Ivy By Request N/A Available
Ivy By Request N/A Available