Item Details

Print View

Solid State Physics

Giuseppe Grosso, Giuseppe Pastori Parravicini
Format
Book
Published
San Diego : Academic Press, c2000.
Language
English
ISBN
012304460X
Contents
  • Chapter I Electrons in one-dimensional periodic potentials 1
  • 1 Bloch theorem for one-dimensional periodicity 2
  • 2 Energy levels in a periodic array of quantum wells 5
  • 3 Electron tunneling and energy bands 8
  • 3.1 Transmission and reflection of electrons through an arbitrary potential 8
  • 3.2 Electron tunneling through a periodic potential 14
  • 4 Tight-binding approximation 16
  • 4.1 Expansion in localized orbitals 16
  • 4.2 Tridiagonal matrices and continued fractions 18
  • 5 Plane waves and nearly free-electron approximation 24
  • 5.1 Expansion in plane waves 24
  • 5.2 Mathieu potential and the continued fraction solution 27
  • 6 Some dynamical aspects of electrons in band theory 29
  • Chapter II Geometrical description of crystals: direct and reciprocal lattices 37
  • 1 Simple lattices and composite lattices 38
  • 1.1 Periodicity and Bravais lattices 38
  • 1.2 Simple and composite crystal structures 41
  • 2 Geometrical description of some crystal structures 43
  • 3 Wigner-Seitz primitive cells 53
  • 4 Reciprocal lattices 54
  • 4.1 Definitions and basic properties 54
  • 4.2 Planes and directions in Bravais lattices 56
  • 5 Brillouin zones 59
  • 6 Translational symmetry and quantum mechanical aspects 62
  • 6.1 Translational symmetry and Bloch wavefunctions 62
  • 6.2 Parametric k [times] p Hamiltonian 63
  • 6.3 Cyclic boundary conditions 67
  • 6.4 Special k points for averaging over the Brillouin zone 68
  • 7 Density-of-states and critical points 70
  • Chapter III Sommerfeld free-electron theory of metals 77
  • 1 Quantum theory of the free-electron gas 77
  • 2 Fermi-Dirac distribution function and chemical potential 82
  • 3 Electronic specific heat in metals and thermodynamic functions 86
  • 4 Thermionic emission from metals 88
  • Appendix A. Outline of statistical physics and thermodynamic relations 89
  • A1. Microcanonical ensemble and thermodynamic quantities 89
  • A2. Canonical ensemble and thermodynamic quantities 91
  • A3. Grand canonical ensemble and thermodynamic quantities 93
  • Appendix B. Fermi-Dirac and Bose-Einstein statistics for independent particles 95
  • Appendix C. Modified Fermi-Dirac statistics in a model of correlation effects 98
  • Chapter IV One-electron approximation and beyond 102
  • 1 Introductory remarks on the many-electron problem 103
  • 2 Hartree equations 104
  • 3 Identical particles and determinantal wavefunctions 106
  • 4 Matrix elements between determinantal states 107
  • 5 Hartree-Fock equations 110
  • 5.1 Variational approach and Hartree-Fock equations 110
  • 5.2 Ground-state energy, ionization energies and transition energies 113
  • 5.3 Hartree-Fock equations and transition energies in closed-shell systems 116
  • 5.4 Hartree-Fock-Slater and Hartree-Fock-Roothaan approximations 119
  • 6 Overview of approaches beyond the one-electron approximation 121
  • 7 Electronic properties and phase diagram of the homogeneous electron gas 122
  • 8 Density functional theory and the Kohn-Sham equations 130
  • Appendix A. Bielectronic integrals among spin-orbitals 137
  • Appendix B. Outline of second quantization formalism for identical fermions 138
  • Appendix C. An integral on the Fermi sphere 141
  • Chapter V Band theory of crystals 143
  • 1 Basic assumptions of the band theory 143
  • 2 Tight-binding method (LCAO method) 145
  • 2.1 Description of the method for simple lattices 145
  • 2.2 Description of the tight-binding method for composite lattices 148
  • 2.3 Illustrative applications of the tight-binding scheme 150
  • 3 Orthogonalized plane wave (OPW) method 154
  • 4 Pseudopotential method 163
  • 5 Cellular method 169
  • 6 Augmented plane wave (APW) method 171
  • 6.1 Description of the method 171
  • 6.2 Expression and evaluation of the matrix elements of the APW method 174
  • 7 Green'sk function method (KKR method) 177
  • 7.1 Scattering integral equation for a generic potential 178
  • 7.2 Scattering integral equation for a periodic muffin-tin potential 180
  • 7.3 Expression and evaluation of the structure coefficients 183
  • 8 Other methods and developments in electronic structure calculations 184
  • 8.1 Linearized cellular methods 184
  • 8.2 Lanczos or recursion method 185
  • 8.3 Modified Lanczos method for excited states 190
  • 8.4 Renormalization method for electronic systems 191
  • Chapter VI Electronic properties of selected crystals 199
  • 1 Band structure and cohesive energy of rare-gas solids 200
  • 1.1 General features of band structure of rare-gas solids 200
  • 1.2 Cohesive energy of rare-gas solids 203
  • 2 Electronic properties of ionic crystals 207
  • 2.1 Introductory remarks and Madelung constant 207
  • 2.2 Considerations on bands and bonds in ionic crystals 214
  • 3 Covalent crystals with diamond structure 218
  • 4 Band structures and Fermi surfaces of some metals 222
  • Chapter VII Excitons, plasmons and dielectric screening in crystals 230
  • 1 Exciton states in crystals 231
  • 2 Plasmon excitations in crystals 239
  • 3 General considerations on the longitudinal dielectric function 240
  • 4 Static dielectric screening in metals with the Thomas-Fermi model 242
  • 5 Static dielectric screening in metals with the Lindhard model 245
  • 6 Dynamic dielectric screening in metals and plasmon modes 250
  • 7 Quantum expression of the longitudinal dielectric function in materials 254
  • 8 Quantum expression of the longitudinal dielectric function in crystals 259
  • 9 Longitudinal dielectric function and energy-loss of a fast charged particle 262
  • Appendix A. Lindhard dielectric function for the free-electron gas 263
  • Chapter VIII Interacting electronic-nuclear systems and the adiabatic principle 268
  • 1 Electronic-nuclear systems and adiabatic potential-energy surfaces 269
  • 2 Non-degenerate adiabatic surface and nuclear dynamics 272
  • 2.1 Non-degenerate adiabatic surface and classical nuclear dynamics 272
  • 2.2 Non-degenerate adiabatic surface and quantum nuclear dynamics 273
  • 3 Degenerate adiabatic surfaces and Jahn-Teller systems 278
  • 3.1 Degenerate adiabatic surfaces and nuclear dynamics 278
  • 3.2 Jahn-Teller effect for doubly degenerate electronic states 282
  • 3.3 Jahn-Teller effect for triply degenerate electronic states 289
  • 4 Hellmann-Feynman theorem and electronic-nuclear systems 294
  • 4.1 General considerations on the Hellmann-Feynman theorem 294
  • 4.2 Charge density and atomic forces 296
  • 5 Parametric Hamiltonians and Berry phase 297
  • 6 Macroscopic electric polarization in crystals and Berry phase 301
  • Chapter IX Lattice dynamics of crystals 307
  • 1 Dynamics of monatomic one-dimensional lattices 308
  • 2 Dynamics of diatomic one-dimensional lattices 312
  • 3 Dynamics of general three-dimensional crystals 315
  • 4 Quantum theory of the harmonic crystal 323
  • 5 Lattice heat capacity. Einstein and Debye models 325
  • 6 Considerations on anharmonic effects and melting of solids 327
  • 7 Optical phonons and polaritons in polar crystals 329
  • 7.1 General considerations 329
  • 7.2 Lattice vibrations in polar crystals and polaritons 331
  • 7.3 Local field effects on polaritons 338
  • Appendix A. Quantum theory of the linear harmonic oscillator 344
  • Chapter X Scattering of particles by crystals 349
  • 1 General considerations 349
  • 2 Elastic scattering of X-rays from crystals 352
  • 2.1 Elastic scattering of X-rays and Bragg diffraction condition 352
  • 2.2 Elastic scattering of X-rays and intensity of diffracted beams 358
  • 3 Inelastic scattering of particles and phonon spectra of crystals 363
  • 4 Compton scattering and electron momentum density 368
  • 5 Diffusion of particles by ak single elastically-bound scatterer 373
  • 5.1 Dynamical structure factor of a single scattering center 373
  • 5.2 Dynamical structure factor of a three-dimensional harmonic oscillator 377
  • 6 Diffusion of particles by a crystal and effects of lattice vibrations 380
  • 7 Mossbauer effect 384
  • Chapter XI Optical and transport properties in metals 389
  • 1 Macroscopic theory of optical constants in homogeneous materials 390
  • 2 Drude theory of the optical properties of free carriers 395
  • 3 Transport properties and Boltzmann equation 403
  • 4 Static and dynamic conductivity in metals 406
  • 4.1 Static conductivity with the Boltzmann equation 406
  • 4.2 Frequency and wavevector dependence of the conductivity 407
  • 4.3 Anomalous skin effect 410
  • 5 Boltzmann treatment and quantum treatment of intraband transitions 413
  • 6 Boltzmann equation in electric fields and temperature gradients 414
  • 6.1 Transport equations in general form 414
  • 6.2 Thermoelectric phenomena 418
  • Chapter XII Optical properties of semiconductors and insulators 425
  • 1 Quantum expression of the transverse dielectric function in materials 426
  • 1.1 Optical constants of homogeneous media in the linear response theory 426
  • 1.2 Optical constants and Green's function of the electronic system 431
  • 2 Quantum theory of band-to-band optical transitions and critical points 433
  • 3 Indirect phonon-assisted transitions 438
  • 4 Two-photon absorption 443
  • 5 Exciton effects on the optical properties 446
  • 6 Fano resonances and absorption lineshapes 452
  • 7 Optical properties of vibronic systems 458
  • 7.1 Optical properties of the Frank-Condon vibronic model 458
  • 7.2 Optical properties of typical Jahn-Teller systems 465
  • Appendix A. Transitions rates at first and higher orders of perturbation theory 469
  • -- Chapter XIII Transport in intrinsic and homogeneously doped semiconductors 473
  • 1 Fermi level and carrier density in intrinsic semiconductors 473
  • 2 Impurity levels in semiconductors 478
  • 3 Fermi level and carrier density in doped semiconductors 485
  • 4 Thermionic emission in semiconductors 490
  • 5 Non-equilibrium carrier distributions 491
  • 5.1 Drift and diffusion currents 491
  • 5.2 Generation and recombination of electron-hole pairs in semiconductors 497
  • 6 Solutions of typical transport equations in uniformly doped semiconductors 498
  • Chapter XIV Transport in inhomogeneous semiconductors 506
  • 1 Properties of the pn junction at equilibrium 506
  • 2 Current-voltage characteristics of the pn junction 512
  • 3 Bipolar junction transistor 517
  • 4 Junction field-effect transistor (JFET) 520
  • 5 Semiconductor heterojunctions 524
  • 6 Metal-semiconductor contacts and MESFET transistor 527
  • 7 Metal-oxide-semiconductor structure and MOSFET transistor 533
  • Chapter XV Electron gas in magnetic fields 543
  • 1 Magnetization and magnetic susceptibility 544
  • 2 Energy levels and density-of-states of a free-electron gas in magnetic fields 546
  • 2.1 Energy levels of the two-dimensional electron gas in magnetic fields 547
  • 2.2 Energy levels of the three-dimensional electron gas in magnetic fields 551
  • 3 Orbital magnetic susceptibility and de Haas-van Alphen effect 554
  • 3.1 Orbital magnetic susceptibility of a two-dimensional electron gas 554
  • 3.2 Orbital magnetic susceptibility of a three-dimensional electron gas 559
  • 4 Spin paramagnetism of a free-electron gas 562
  • 5 Magnetoresistivity and classical Hall effect 564
  • 6 Quantum Hall effect 569
  • Appendix A. Free energy of an electron gas in a uniform magnetic field 574
  • Appendix B. Generalized orbital magnetic susceptibility of the free-electron gas 579
  • Chapter XVI Magnetic properties of localized systems and Kondo impurities 586
  • 1 Quantum mechanical treatment of magnetic susceptibility 587
  • 2 Magnetic susceptibility of closed-shell systems 589
  • 3 Permanent magnetic dipoles in atoms or ions with partially filled shells 591
  • 4 Paramagnetism of localized magnetic moments 593
  • 5 Localized magnetic states in normal metals 598
  • 6 Dilute magnetic alloys and the resistance minimum phenomenon 602
  • 6.1 Some phenomenological aspects 602
  • 6.2 Resistance minimum phenomenon 604
  • 6.3 Microscopic origin of the Kondo interaction: a molecular model 608
  • 7 Magnetic impurity in normal metals at very low temperatures 612
  • Chapter XVII Magnetic ordering in crystals 619
  • 1 Ferromagnetism and the Weiss molecular field 620
  • 2 Microscopic origin of the coupling between localized magnetic moments 627
  • 3 Antiferromagnetism in the mean field approximation 635
  • 4 Spin waves and magnons in ferromagnetic crystals 638
  • 5 Ising model with the transfer matrix method 643
  • 6 Ising model with the renormalization group theory 647
  • 7 Stoner-Hubbard itinerant electron model for magnetism 659
  • Chapter XVIII Superconductivity 663
  • 1 Some phenomenological aspects of superconductors 664
  • 2 Cooper pair idea 672
  • 3 Ground state for a superconductor in the BCS theory at zero temperature 678
  • 3.1 Variational determination of the ground-state wavefunction 678
  • 3.2 Ground-state energy and isotopic effect 682
  • 3.3 Momentum distribution and coherence length 684
  • 4 Excited states of superconductors at zero temperature 686
  • 4.1 Bogoliubov canonical transformation 686
  • 4.2 Persistent currents in superconductors 691
  • 4.3 Electron tunneling into superconductors 691
  • 5 Treatment of superconductors at finite temperature and heat capacity 693
  • 6 Diamagnetism of superconductors and Meissner effect 698
  • 6.1 Phenomenological London model 698
  • 6.2 Pippardk electrodynamics and effective magnetic penetration depth 702
  • 7 Macroscopic quantum phenomena 704
  • 7.1 Order parameter in superconductors and Ginzburg-Landau theory 704
  • 7.2 Magnetic flux quantization 708
  • 7.3 Type-I and type-II superconductors 709
  • 8 Cooper pair tunneling between superconductors and Josephson effects 711
  • Appendix A. Phonon-induced electron-electron interaction 717.
Description
xiii, 727 p. : ill. ; 26 cm.
Notes
Includes bibliographical references and index.
Technical Details
  • Access in Virgo Classic
  • Staff View

    LEADER 15339cam a22003494a 4500
    001 u3734689
    003 SIRSI
    005 20010716143500.0
    008 990527s2000 cau b 001 0 eng
    010
      
      
    a| 99064032
    015
      
      
    a| GBA0-16192
    020
      
      
    a| 012304460X
    035
      
      
    a| (Sirsi) i012304460X
    035
      
      
    a| (OCoLC)43541296
    040
      
      
    a| DLC c| DLC d| UKM d| IWA d| TXA d| MvI
    042
      
      
    a| pcc
    050
    0
    0
    a| QC176 b| .G76 2000
    082
    0
    0
    a| 530.4/1 2| 21
    100
    1
      
    a| Grosso, Giuseppe.
    245
    1
    0
    a| Solid state physics / c| Giuseppe Grosso, Giuseppe Pastori Parravicini.
    260
      
      
    a| San Diego : b| Academic Press, c| c2000.
    300
      
      
    a| xiii, 727 p. : b| ill. ; c| 26 cm.
    504
      
      
    a| Includes bibliographical references and index.
    505
    0
    0
    g| Chapter I t| Electrons in one-dimensional periodic potentials g| 1 -- g| 1 t| Bloch theorem for one-dimensional periodicity g| 2 -- g| 2 t| Energy levels in a periodic array of quantum wells g| 5 -- g| 3 t| Electron tunneling and energy bands g| 8 -- g| 3.1 t| Transmission and reflection of electrons through an arbitrary potential g| 8 -- g| 3.2 t| Electron tunneling through a periodic potential g| 14 -- g| 4 t| Tight-binding approximation g| 16 -- g| 4.1 t| Expansion in localized orbitals g| 16 -- g| 4.2 t| Tridiagonal matrices and continued fractions g| 18 -- g| 5 t| Plane waves and nearly free-electron approximation g| 24 -- g| 5.1 t| Expansion in plane waves g| 24 -- g| 5.2 t| Mathieu potential and the continued fraction solution g| 27 -- g| 6 t| Some dynamical aspects of electrons in band theory g| 29 -- g| Chapter II t| Geometrical description of crystals: direct and reciprocal lattices g| 37 -- g| 1 t| Simple lattices and composite lattices g| 38 -- g| 1.1 t| Periodicity and Bravais lattices g| 38 -- g| 1.2 t| Simple and composite crystal structures g| 41 -- g| 2 t| Geometrical description of some crystal structures g| 43 -- g| 3 t| Wigner-Seitz primitive cells g| 53 -- g| 4 t| Reciprocal lattices g| 54 -- g| 4.1 t| Definitions and basic properties g| 54 -- g| 4.2 t| Planes and directions in Bravais lattices g| 56 -- g| 5 t| Brillouin zones g| 59 -- g| 6 t| Translational symmetry and quantum mechanical aspects g| 62 -- g| 6.1 t| Translational symmetry and Bloch wavefunctions g| 62 -- g| 6.2 t| Parametric k [times] p Hamiltonian g| 63 -- g| 6.3 t| Cyclic boundary conditions g| 67 -- g| 6.4 t| Special k points for averaging over the Brillouin zone g| 68 -- g| 7 t| Density-of-states and critical points g| 70 -- g| Chapter III t| Sommerfeld free-electron theory of metals g| 77 -- g| 1 t| Quantum theory of the free-electron gas g| 77 -- g| 2 t| Fermi-Dirac distribution function and chemical potential g| 82 -- g| 3 t| Electronic specific heat in metals and thermodynamic functions g| 86 -- g| 4 t| Thermionic emission from metals g| 88 -- g| Appendix A. t| Outline of statistical physics and thermodynamic relations g| 89 -- g| A1. t| Microcanonical ensemble and thermodynamic quantities g| 89 -- g| A2. t| Canonical ensemble and thermodynamic quantities g| 91 -- g| A3. t| Grand canonical ensemble and thermodynamic quantities g| 93 -- g| Appendix B. t| Fermi-Dirac and Bose-Einstein statistics for independent particles g| 95 -- g| Appendix C. t| Modified Fermi-Dirac statistics in a model of correlation effects g| 98 -- g| Chapter IV t| One-electron approximation and beyond g| 102 -- g| 1 t| Introductory remarks on the many-electron problem g| 103 -- g| 2 t| Hartree equations g| 104 -- g| 3 t| Identical particles and determinantal wavefunctions g| 106 -- g| 4 t| Matrix elements between determinantal states g| 107 -- g| 5 t| Hartree-Fock equations g| 110 -- g| 5.1 t| Variational approach and Hartree-Fock equations g| 110 -- g| 5.2 t| Ground-state energy, ionization energies and transition energies g| 113 -- g| 5.3 t| Hartree-Fock equations and transition energies in closed-shell systems g| 116 -- g| 5.4 t| Hartree-Fock-Slater and Hartree-Fock-Roothaan approximations g| 119 -- g| 6 t| Overview of approaches beyond the one-electron approximation g| 121 -- g| 7 t| Electronic properties and phase diagram of the homogeneous electron gas g| 122 -- g| 8 t| Density functional theory and the Kohn-Sham equations g| 130 -- g| Appendix A. t| Bielectronic integrals among spin-orbitals g| 137 -- g| Appendix B. t| Outline of second quantization formalism for identical fermions g| 138 -- g| Appendix C. t| An integral on the Fermi sphere g| 141 -- g| Chapter V t| Band theory of crystals g| 143 -- g| 1 t| Basic assumptions of the band theory g| 143 -- g| 2 t| Tight-binding method (LCAO method) g| 145 -- g| 2.1 t| Description of the method for simple lattices g| 145 -- g| 2.2 t| Description of the tight-binding method for composite lattices g| 148 -- g| 2.3 t| Illustrative applications of the tight-binding scheme g| 150 -- g| 3 t| Orthogonalized plane wave (OPW) method g| 154 -- g| 4 t| Pseudopotential method g| 163 -- g| 5 t| Cellular method g| 169 -- g| 6 t| Augmented plane wave (APW) method g| 171 -- g| 6.1 t| Description of the method g| 171 -- g| 6.2 t| Expression and evaluation of the matrix elements of the APW method g| 174 -- g| 7 t| Green'sk function method (KKR method) g| 177 -- g| 7.1 t| Scattering integral equation for a generic potential g| 178 -- g| 7.2 t| Scattering integral equation for a periodic muffin-tin potential g| 180 -- g| 7.3 t| Expression and evaluation of the structure coefficients g| 183 -- g| 8 t| Other methods and developments in electronic structure calculations g| 184 -- g| 8.1 t| Linearized cellular methods g| 184 -- g| 8.2 t| Lanczos or recursion method g| 185 -- g| 8.3 t| Modified Lanczos method for excited states g| 190 -- g| 8.4 t| Renormalization method for electronic systems g| 191 -- g| Chapter VI t| Electronic properties of selected crystals g| 199 -- g| 1 t| Band structure and cohesive energy of rare-gas solids g| 200 -- g| 1.1 t| General features of band structure of rare-gas solids g| 200 -- g| 1.2 t| Cohesive energy of rare-gas solids g| 203 -- g| 2 t| Electronic properties of ionic crystals g| 207 -- g| 2.1 t| Introductory remarks and Madelung constant g| 207 -- g| 2.2 t| Considerations on bands and bonds in ionic crystals g| 214 -- g| 3 t| Covalent crystals with diamond structure g| 218 -- g| 4 t| Band structures and Fermi surfaces of some metals g| 222 -- g| Chapter VII t| Excitons, plasmons and dielectric screening in crystals g| 230 -- g| 1 t| Exciton states in crystals g| 231 -- g| 2 t| Plasmon excitations in crystals g| 239 -- g| 3 t| General considerations on the longitudinal dielectric function g| 240 -- g| 4 t| Static dielectric screening in metals with the Thomas-Fermi model g| 242 -- g| 5 t| Static dielectric screening in metals with the Lindhard model g| 245 -- g| 6 t| Dynamic dielectric screening in metals and plasmon modes g| 250 -- g| 7 t| Quantum expression of the longitudinal dielectric function in materials g| 254 -- g| 8 t| Quantum expression of the longitudinal dielectric function in crystals g| 259 -- g| 9 t| Longitudinal dielectric function and energy-loss of a fast charged particle g| 262 -- g| Appendix A. t| Lindhard dielectric function for the free-electron gas g| 263 -- g| Chapter VIII t| Interacting electronic-nuclear systems and the adiabatic principle g| 268 -- g| 1 t| Electronic-nuclear systems and adiabatic potential-energy surfaces g| 269 -- g| 2 t| Non-degenerate adiabatic surface and nuclear dynamics g| 272 -- g| 2.1 t| Non-degenerate adiabatic surface and classical nuclear dynamics g| 272 -- g| 2.2 t| Non-degenerate adiabatic surface and quantum nuclear dynamics g| 273 -- g| 3 t| Degenerate adiabatic surfaces and Jahn-Teller systems g| 278 -- g| 3.1 t| Degenerate adiabatic surfaces and nuclear dynamics g| 278 -- g| 3.2 t| Jahn-Teller effect for doubly degenerate electronic states g| 282 -- g| 3.3 t| Jahn-Teller effect for triply degenerate electronic states g| 289 -- g| 4 t| Hellmann-Feynman theorem and electronic-nuclear systems g| 294 -- g| 4.1 t| General considerations on the Hellmann-Feynman theorem g| 294 -- g| 4.2 t| Charge density and atomic forces g| 296 -- g| 5 t| Parametric Hamiltonians and Berry phase g| 297 -- g| 6 t| Macroscopic electric polarization in crystals and Berry phase g| 301 -- g| Chapter IX t| Lattice dynamics of crystals g| 307 -- g| 1 t| Dynamics of monatomic one-dimensional lattices g| 308 -- g| 2 t| Dynamics of diatomic one-dimensional lattices g| 312 -- g| 3 t| Dynamics of general three-dimensional crystals g| 315 -- g| 4 t| Quantum theory of the harmonic crystal g| 323 -- g| 5 t| Lattice heat capacity. Einstein and Debye models g| 325 -- g| 6 t| Considerations on anharmonic effects and melting of solids g| 327 -- g| 7 t| Optical phonons and polaritons in polar crystals g| 329 -- g| 7.1 t| General considerations g| 329 -- g| 7.2 t| Lattice vibrations in polar crystals and polaritons g| 331 -- g| 7.3 t| Local field effects on polaritons g| 338 -- g| Appendix A. t| Quantum theory of the linear harmonic oscillator g| 344 -- g| Chapter X t| Scattering of particles by crystals g| 349 -- g| 1 t| General considerations g| 349 -- g| 2 t| Elastic scattering of X-rays from crystals g| 352 -- g| 2.1 t| Elastic scattering of X-rays and Bragg diffraction condition g| 352 -- g| 2.2 t| Elastic scattering of X-rays and intensity of diffracted beams g| 358 -- g| 3 t| Inelastic scattering of particles and phonon spectra of crystals g| 363 -- g| 4 t| Compton scattering and electron momentum density g| 368 -- g| 5 t| Diffusion of particles by ak single elastically-bound scatterer g| 373 -- g| 5.1 t| Dynamical structure factor of a single scattering center g| 373 -- g| 5.2 t| Dynamical structure factor of a three-dimensional harmonic oscillator g| 377 -- g| 6 t| Diffusion of particles by a crystal and effects of lattice vibrations g| 380 -- g| 7 t| Mossbauer effect g| 384 -- g| Chapter XI t| Optical and transport properties in metals g| 389 -- g| 1 t| Macroscopic theory of optical constants in homogeneous materials g| 390 -- g| 2 t| Drude theory of the optical properties of free carriers g| 395 -- g| 3 t| Transport properties and Boltzmann equation g| 403 -- g| 4 t| Static and dynamic conductivity in metals g| 406 -- g| 4.1 t| Static conductivity with the Boltzmann equation g| 406 -- g| 4.2 t| Frequency and wavevector dependence of the conductivity g| 407 -- g| 4.3 t| Anomalous skin effect g| 410 -- g| 5 t| Boltzmann treatment and quantum treatment of intraband transitions g| 413 -- g| 6 t| Boltzmann equation in electric fields and temperature gradients g| 414 -- g| 6.1 t| Transport equations in general form g| 414 -- g| 6.2 t| Thermoelectric phenomena g| 418 -- g| Chapter XII t| Optical properties of semiconductors and insulators g| 425 -- g| 1 t| Quantum expression of the transverse dielectric function in materials g| 426 -- g| 1.1 t| Optical constants of homogeneous media in the linear response theory g| 426 -- g| 1.2 t| Optical constants and Green's function of the electronic system g| 431 -- g| 2 t| Quantum theory of band-to-band optical transitions and critical points g| 433 -- g| 3 t| Indirect phonon-assisted transitions g| 438 -- g| 4 t| Two-photon absorption g| 443 -- g| 5 t| Exciton effects on the optical properties g| 446 -- g| 6 t| Fano resonances and absorption lineshapes g| 452 -- g| 7 t| Optical properties of vibronic systems g| 458 -- g| 7.1 t| Optical properties of the Frank-Condon vibronic model g| 458 -- g| 7.2 t| Optical properties of typical Jahn-Teller systems g| 465 -- g| Appendix A. t| Transitions rates at first and higher orders of perturbation theory g| 469 --
    505
    8
    0
    g| Chapter XIII t| Transport in intrinsic and homogeneously doped semiconductors g| 473 -- g| 1 t| Fermi level and carrier density in intrinsic semiconductors g| 473 -- g| 2 t| Impurity levels in semiconductors g| 478 -- g| 3 t| Fermi level and carrier density in doped semiconductors g| 485 -- g| 4 t| Thermionic emission in semiconductors g| 490 -- g| 5 t| Non-equilibrium carrier distributions g| 491 -- g| 5.1 t| Drift and diffusion currents g| 491 -- g| 5.2 t| Generation and recombination of electron-hole pairs in semiconductors g| 497 -- g| 6 t| Solutions of typical transport equations in uniformly doped semiconductors g| 498 -- g| Chapter XIV t| Transport in inhomogeneous semiconductors g| 506 -- g| 1 t| Properties of the pn junction at equilibrium g| 506 -- g| 2 t| Current-voltage characteristics of the pn junction g| 512 -- g| 3 t| Bipolar junction transistor g| 517 -- g| 4 t| Junction field-effect transistor (JFET) g| 520 -- g| 5 t| Semiconductor heterojunctions g| 524 -- g| 6 t| Metal-semiconductor contacts and MESFET transistor g| 527 -- g| 7 t| Metal-oxide-semiconductor structure and MOSFET transistor g| 533 -- g| Chapter XV t| Electron gas in magnetic fields g| 543 -- g| 1 t| Magnetization and magnetic susceptibility g| 544 -- g| 2 t| Energy levels and density-of-states of a free-electron gas in magnetic fields g| 546 -- g| 2.1 t| Energy levels of the two-dimensional electron gas in magnetic fields g| 547 -- g| 2.2 t| Energy levels of the three-dimensional electron gas in magnetic fields g| 551 -- g| 3 t| Orbital magnetic susceptibility and de Haas-van Alphen effect g| 554 -- g| 3.1 t| Orbital magnetic susceptibility of a two-dimensional electron gas g| 554 -- g| 3.2 t| Orbital magnetic susceptibility of a three-dimensional electron gas g| 559 -- g| 4 t| Spin paramagnetism of a free-electron gas g| 562 -- g| 5 t| Magnetoresistivity and classical Hall effect g| 564 -- g| 6 t| Quantum Hall effect g| 569 -- g| Appendix A. t| Free energy of an electron gas in a uniform magnetic field g| 574 -- g| Appendix B. t| Generalized orbital magnetic susceptibility of the free-electron gas g| 579 -- g| Chapter XVI t| Magnetic properties of localized systems and Kondo impurities g| 586 -- g| 1 t| Quantum mechanical treatment of magnetic susceptibility g| 587 -- g| 2 t| Magnetic susceptibility of closed-shell systems g| 589 -- g| 3 t| Permanent magnetic dipoles in atoms or ions with partially filled shells g| 591 -- g| 4 t| Paramagnetism of localized magnetic moments g| 593 -- g| 5 t| Localized magnetic states in normal metals g| 598 -- g| 6 t| Dilute magnetic alloys and the resistance minimum phenomenon g| 602 -- g| 6.1 t| Some phenomenological aspects g| 602 -- g| 6.2 t| Resistance minimum phenomenon g| 604 -- g| 6.3 t| Microscopic origin of the Kondo interaction: a molecular model g| 608 -- g| 7 t| Magnetic impurity in normal metals at very low temperatures g| 612 -- g| Chapter XVII t| Magnetic ordering in crystals g| 619 -- g| 1 t| Ferromagnetism and the Weiss molecular field g| 620 -- g| 2 t| Microscopic origin of the coupling between localized magnetic moments g| 627 -- g| 3 t| Antiferromagnetism in the mean field approximation g| 635 -- g| 4 t| Spin waves and magnons in ferromagnetic crystals g| 638 -- g| 5 t| Ising model with the transfer matrix method g| 643 -- g| 6 t| Ising model with the renormalization group theory g| 647 -- g| 7 t| Stoner-Hubbard itinerant electron model for magnetism g| 659 -- g| Chapter XVIII t| Superconductivity g| 663 -- g| 1 t| Some phenomenological aspects of superconductors g| 664 -- g| 2 t| Cooper pair idea g| 672 -- g| 3 t| Ground state for a superconductor in the BCS theory at zero temperature g| 678 -- g| 3.1 t| Variational determination of the ground-state wavefunction g| 678 -- g| 3.2 t| Ground-state energy and isotopic effect g| 682 -- g| 3.3 t| Momentum distribution and coherence length g| 684 -- g| 4 t| Excited states of superconductors at zero temperature g| 686 -- g| 4.1 t| Bogoliubov canonical transformation g| 686 -- g| 4.2 t| Persistent currents in superconductors g| 691 -- g| 4.3 t| Electron tunneling into superconductors g| 691 -- g| 5 t| Treatment of superconductors at finite temperature and heat capacity g| 693 -- g| 6 t| Diamagnetism of superconductors and Meissner effect g| 698 -- g| 6.1 t| Phenomenological London model g| 698 -- g| 6.2 t| Pippardk electrodynamics and effective magnetic penetration depth g| 702 -- g| 7 t| Macroscopic quantum phenomena g| 704 -- g| 7.1 t| Order parameter in superconductors and Ginzburg-Landau theory g| 704 -- g| 7.2 t| Magnetic flux quantization g| 708 -- g| 7.3 t| Type-I and type-II superconductors g| 709 -- g| 8 t| Cooper pair tunneling between superconductors and Josephson effects g| 711 -- g| Appendix A. t| Phonon-induced electron-electron interaction g| 717.
    596
      
      
    a| 9
    650
      
    0
    a| Solid state physics.
    700
    1
      
    a| Pastori Parravicini, Giuseppe.
    994
      
      
    a| Z0 b| VA@
    999
      
      
    a| QC176 .G76 2000 w| LC i| X006163127 l| STACKS m| PHYSICS t| BOOK
    999
      
      
    a| QC176 .G76 2000 w| LC i| X004595481 l| LOST m| PHYSICS t| BOOK
▾See more
▴See less

Availability

Google Preview

Google Books Preview
Library Location Map Availability Call Number
Physics Stacks N/A Available