Item Details

Print View

Chemical Process Technology

Jacob A. Moulijn, Michiel Makkee, Annelies van Diepen
Format
Book
Published
Chichester [England] ; New York : John Wiley, c2001.
Language
English
ISBN
0471630098 (hardback : alk. paper), 0471630624 (pbk. : alk. paper)
Contents
  • 2 Chemical Industry 7
  • 2.2 Structure of the chemical industry 7
  • 2.3 Raw materials and energy 10
  • 2.3.1 Fossil fuel consumption and reserves 10
  • 2.3.2 Energy and the chemical industry 12
  • 2.3.3 Composition of fossil fuels 15
  • 2.4 Base chemicals 23
  • 3 Processes in the Oil Refinery 27
  • 3.1 Oil refinery--an overview 27
  • 3.2 Physical processes 27
  • 3.2.1 Desalting/dehydration 27
  • 3.2.2 Crude distillation 29
  • 3.2.3 Propane deasphalting 31
  • 3.3 Thermal processes 32
  • 3.3.1 Visbreaking 32
  • 3.3.2 Delayed coking 33
  • 3.4 Catalytic processes 33
  • 3.4.1 Catalytic cracking 36
  • 3.4.2 Hydrotreating 49
  • 3.4.3 Hydrocracking 54
  • 3.4.4 Catalytic reforming 59
  • 3.4.5 Alkylation 65
  • 3.5 Conversion of heavy residues 70
  • 3.5.1 Flexicoking 71
  • 3.5.2 Catalytic hydrogenation of residues 73
  • 3.6 Treatment of refinery gas streams 78
  • 3.6.1 Removal of H[subscript 2]S from refinery exhaust gases 78
  • 3.6.2 Recovery of hydrogen from refinery gas streams 83
  • 3.7 Current and future trends in oil refining 88
  • 3.7.1 Reformulated gasoline 88
  • 3.7.2 Diesel 89
  • 3.7.3 Use of zeolites for shape selectivity in the oil refinery 90
  • 3.7.4 Alternative technology and fuels 96
  • 4 Steam Cracking: Production of Lower Alkenes 109
  • 4.2 Cracking reactions 110
  • 4.2.1 Thermodynamics 110
  • 4.2.2 Mechanism 111
  • 4.2.3 Kinetics 112
  • 4.3 Industrial process 113
  • 4.3.1 Influence of feedstock on steam cracker operation and products 114
  • 4.3.2 Cracking furnace 117
  • 4.3.3 Heat exchanger 119
  • 4.3.4 Coke 120
  • 4.4 Product processing 121
  • 4.5 Current and future developments 123
  • 4.5.1 Selective dehydrogenation 123
  • 4.5.2 Other sources of lower alkenes 126
  • 5 Synthesis Gas 131
  • 5.2 Synthesis gas from natural gas 133
  • 5.2.1 Reactions and thermodynamics 133
  • 5.2.2 Steam reforming process 135
  • 5.2.3 Advances in steam reforming 139
  • 5.2.4 Autothermic reforming 140
  • 5.2.5 Novel developments 142
  • 5.3 Coal gasification 144
  • 5.3.1 Gasification reactions 144
  • 5.3.2 Thermodynamics 147
  • 5.3.3 Current coal gasification processes 149
  • 5.3.4 Recent developments 153
  • 5.3.5 Applications 154
  • 5.4 Purification and adjustment of synthesis gas 158
  • 5.4.1 Conversion of carbon monoxide 158
  • 5.4.2 Gas purification 159
  • 6 Bulk Chemicals and Synthetic Fuels Derived from Synthesis Gas 163
  • 6.1 Ammonia 163
  • 6.1.2 Thermodynamics 165
  • 6.1.3 Commercial ammonia synthesis reactors 166
  • 6.1.4 Ammonia synthesis loop 169
  • 6.1.5 Integrated ammonia plant 169
  • 6.1.6 Applications of ammonia 173
  • 6.2 Methanol 180
  • 6.2.2 Thermodynamics 180
  • 6.2.3 Synthesis gas for methanol production 183
  • 6.2.4 Methanol synthesis 184
  • 6.2.5 Applications of methanol 187
  • 6.3 Fischer--Tropsch process 193
  • 6.3.1 Reactions and thermodynamics 194
  • 6.3.2 Reactors used in Fischer--Tropsch synthesis 196
  • 6.3.3 Carbon removal 197
  • 6.3.4 Processes 198
  • 6.3.5 Future developments 201
  • 7 Inorganic Bulk Chemicals 205
  • 7.1 Sulfuric acid 205
  • 7.1.1 Reactions and thermodynamics 206
  • 7.1.2 SO[subscript 2] conversion reactor 207
  • 7.1.3 Modern sulfuric acid production process 208
  • 7.1.4 Catalyst deactivation 210
  • 7.2 Nitric acid 210
  • 7.2.1 Reactions and thermodynamics 210
  • 7.2.2 Processes 212
  • 7.2.3 NO[subscript x] abatement 215
  • 8 Homogeneous Catalysis 219
  • 8.2 Wacker oxidation 221
  • 8.2.2 Processes 224
  • 8.3 Acetic acid production 228
  • 8.3.2 Methanol carbonylation process 230
  • 8.3.3 Process economics 235
  • 8.4 Hydroformylation 235
  • 8.4.2 Thermodynamics 237
  • 8.4.3 Catalyst development 237
  • 8.4.4 Processes 239
  • 8.5 Dimethyl terephthalate and terephthalic acid production 244
  • 8.5.2 Conversion of p-toluic acid intermediate 246
  • 8.5.3 Processes 247
  • 8.5.4 Process comparison 249
  • 8.6 Review of reactors used in homogeneous catalysis 250
  • 8.6.1 Choice of reactor 250
  • 8.6.2 Exchanging heat 252
  • 8.7 Review of catalyst/product separation methods 252
  • 8.7.1 Current separation techniques 253
  • 8.7.2 Future developments 254
  • 9 Heterogeneous Catalysis--Concepts and Examples 257
  • 9.2 Catalyst design 258
  • 9.2.1 Catalyst size and shape 258
  • 9.2.2 Mechanical properties of catalyst particles 260
  • 9.3 Reactor types and their characteristics 260
  • 9.3.1 Reactor types 261
  • 9.3.2 Exchanging heat 263
  • 9.3.3 Role of catalyst deactivation 265
  • 9.3.4 Other issues 267
  • 9.4 Novel developments in reactor technology 268
  • 9.4.1 Adiabatic reactor with periodic flow reversal 269
  • 9.4.2 Structured catalytic reactors 270
  • 9.4.3 Hybrid systems 272
  • 9.5 Selected examples of heterogeneous catalysis 277
  • 9.5.1 Ethylbenzene and styrene production 277
  • 9.5.2 Selective oxidations 286
  • 9.5.3 Monolith applications 294
  • 10 Fine Chemistry 307
  • 10.2 Plants for the production of fine chemicals 312
  • 10.3 Batch reactor design 316
  • 10.3.1 Mechanically stirred batch reactors 316
  • 10.3.2 Batch reactors for gas-liquid-solid systems 318
  • 10.4 Batch reactor scale-up 320
  • 10.4.1 Temperature control 322
  • 10.4.2 Heat transfer 322
  • 10.4.3 Example of the scale-up of a batch and semi-batch reactor 323
  • 10.5 Safety aspects of fine chemicals 327
  • 10.5.1 Thermal risks in the production of chemicals 328
  • 10.5.2 Safety and process development 328
  • 10.5.3 Summary of scale-up of batch reactors 330
  • 11 Polymerization Processes 333
  • 11.2 Polymerization reactions 334
  • 11.2.1 Types of polymerization 334
  • 11.2.2 Mechanisms of chain-growth polymerization 336
  • 11.3 Polyethenes - background information 339
  • 11.3.1 Catalyst development 339
  • 11.3.2 Classification and properties 339
  • 11.3.3 Applications 341
  • 11.4 Processes for the production of polyethenes 341
  • 11.4.1 Monomer production and purification 342
  • 11.4.2 Polymerization--exothermicity 342
  • 11.4.3 Production of LDPE 343
  • 11.4.4 Production of HDPE and LLDPE 348
  • 11.4.5 Economics of polyethene production processes 350
  • 12 Biotechnology 353
  • 12.2 Conversion Processes 355
  • 12.2.2 Mode of operation 356
  • 12.2.3 Type of reactor 357
  • 12.2.4 Sterilization 362
  • 12.3 Fermentation technology--cell biomass (bakers' yeast production) 363
  • 12.3.1 Process layout 364
  • 12.3.2 Cultivation equipment 365
  • 12.3.3 Downstream processing 365
  • 12.4 Fermentation technology--metabolic products (biomass as renewable energy source) 366
  • 12.4.1 Ethanol 366
  • 12.4.2 Biogas 367
  • 12.5 Environmental application--wastewater treatment 368
  • 12.5.2 Process layout 369
  • 12.5.3 Biological treatment processes 370
  • 12.6 Enzyme technology--biocatalysts for transformations 376
  • 12.6.1 General aspects 376
  • 12.6.2 Production of L-amino acids 378
  • 12.6.3 Production of artificial sweeteners 379
  • 13 Process Development 387
  • 13.1 Dependence of strategy on product type and raw materials 387
  • 13.2 Course of process development 389
  • 13.3 Development of individual steps 391
  • 13.3.1 Exploratory phase 392
  • 13.3.2 From process concept to preliminary flow sheet 392
  • 13.3.3 Pilot plants/miniplants 395
  • 13.4 Scale-up 401
  • 13.4.1 Reactors with a single fluid phase 402
  • 13.4.2 Fixed-bed catalytic reactors 404
  • 13.4.3 Catalyst stability and accumulation of impurities 408
  • 13.5 Safety and loss prevention 408
  • 13.5.2 Safety issues 409
  • 13.5.3 Reactivity hazards 415
  • 13.5.4 Design approaches to safety 417
  • 13.6 Process evaluation 419
  • 13.6.2 Capital cost estimation 420
  • 13.6.3 Operating costs and earnings 426
  • 13.6.4 Profitability measures 430
  • 13.7 Current and future trends 431
  • Appendix A Chemical industry--Figures 437.
Description
xii, 453 p. : ill. ; 25 cm.
Notes
Includes bibliographical references and index.
Technical Details
  • Access in Virgo Classic
  • Staff View

    LEADER 09273pam a22003494a 4500
    001 u3733240
    003 SIRSI
    005 20010611084142.0
    008 000918s2001 enka b 001 0 eng
    010
      
      
    a| 00048590
    020
      
      
    a| 0471630098 (hardback : alk. paper)
    020
      
      
    a| 0471630624 (pbk. : alk. paper)
    035
      
      
    a| (Sirsi) i0471630098
    035
      
      
    a| (OCoLC)45767355
    040
      
      
    a| DLC c| DLC d| NhCcYBP d| MvI
    042
      
      
    a| pcc
    050
    0
    0
    a| TP155.7 b| .M68 2001
    082
    0
    0
    a| 660/.281 2| 21
    090
      
      
    a| SCIENG/TP155.7 b| .M68 2001
    100
    1
      
    a| Moulijn, Jacob A.
    245
    1
    0
    a| Chemical process technology / c| Jacob A. Moulijn, Michiel Makkee, Annelies van Diepen.
    260
      
      
    a| Chichester [England] ; a| New York : b| John Wiley, c| c2001.
    300
      
      
    a| xii, 453 p. : b| ill. ; c| 25 cm.
    504
      
      
    a| Includes bibliographical references and index.
    505
    0
    0
    g| 2 t| Chemical Industry g| 7 -- g| 2.2 t| Structure of the chemical industry g| 7 -- g| 2.3 t| Raw materials and energy g| 10 -- g| 2.3.1 t| Fossil fuel consumption and reserves g| 10 -- g| 2.3.2 t| Energy and the chemical industry g| 12 -- g| 2.3.3 t| Composition of fossil fuels g| 15 -- g| 2.4 t| Base chemicals g| 23 -- g| 3 t| Processes in the Oil Refinery g| 27 -- g| 3.1 t| Oil refinery--an overview g| 27 -- g| 3.2 t| Physical processes g| 27 -- g| 3.2.1 t| Desalting/dehydration g| 27 -- g| 3.2.2 t| Crude distillation g| 29 -- g| 3.2.3 t| Propane deasphalting g| 31 -- g| 3.3 t| Thermal processes g| 32 -- g| 3.3.1 t| Visbreaking g| 32 -- g| 3.3.2 t| Delayed coking g| 33 -- g| 3.4 t| Catalytic processes g| 33 -- g| 3.4.1 t| Catalytic cracking g| 36 -- g| 3.4.2 t| Hydrotreating g| 49 -- g| 3.4.3 t| Hydrocracking g| 54 -- g| 3.4.4 t| Catalytic reforming g| 59 -- g| 3.4.5 t| Alkylation g| 65 -- g| 3.5 t| Conversion of heavy residues g| 70 -- g| 3.5.1 t| Flexicoking g| 71 -- g| 3.5.2 t| Catalytic hydrogenation of residues g| 73 -- g| 3.6 t| Treatment of refinery gas streams g| 78 -- g| 3.6.1 t| Removal of H[subscript 2]S from refinery exhaust gases g| 78 -- g| 3.6.2 t| Recovery of hydrogen from refinery gas streams g| 83 -- g| 3.7 t| Current and future trends in oil refining g| 88 -- g| 3.7.1 t| Reformulated gasoline g| 88 -- g| 3.7.2 t| Diesel g| 89 -- g| 3.7.3 t| Use of zeolites for shape selectivity in the oil refinery g| 90 -- g| 3.7.4 t| Alternative technology and fuels g| 96 -- g| 4 t| Steam Cracking: Production of Lower Alkenes g| 109 -- g| 4.2 t| Cracking reactions g| 110 -- g| 4.2.1 t| Thermodynamics g| 110 -- g| 4.2.2 t| Mechanism g| 111 -- g| 4.2.3 t| Kinetics g| 112 -- g| 4.3 t| Industrial process g| 113 -- g| 4.3.1 t| Influence of feedstock on steam cracker operation and products g| 114 -- g| 4.3.2 t| Cracking furnace g| 117 -- g| 4.3.3 t| Heat exchanger g| 119 -- g| 4.3.4 t| Coke g| 120 -- g| 4.4 t| Product processing g| 121 -- g| 4.5 t| Current and future developments g| 123 -- g| 4.5.1 t| Selective dehydrogenation g| 123 -- g| 4.5.2 t| Other sources of lower alkenes g| 126 -- g| 5 t| Synthesis Gas g| 131 -- g| 5.2 t| Synthesis gas from natural gas g| 133 -- g| 5.2.1 t| Reactions and thermodynamics g| 133 -- g| 5.2.2 t| Steam reforming process g| 135 -- g| 5.2.3 t| Advances in steam reforming g| 139 -- g| 5.2.4 t| Autothermic reforming g| 140 -- g| 5.2.5 t| Novel developments g| 142 -- g| 5.3 t| Coal gasification g| 144 -- g| 5.3.1 t| Gasification reactions g| 144 -- g| 5.3.2 t| Thermodynamics g| 147 -- g| 5.3.3 t| Current coal gasification processes g| 149 -- g| 5.3.4 t| Recent developments g| 153 -- g| 5.3.5 t| Applications g| 154 -- g| 5.4 t| Purification and adjustment of synthesis gas g| 158 -- g| 5.4.1 t| Conversion of carbon monoxide g| 158 -- g| 5.4.2 t| Gas purification g| 159 -- g| 6 t| Bulk Chemicals and Synthetic Fuels Derived from Synthesis Gas g| 163 -- g| 6.1 t| Ammonia g| 163 -- g| 6.1.2 t| Thermodynamics g| 165 -- g| 6.1.3 t| Commercial ammonia synthesis reactors g| 166 -- g| 6.1.4 t| Ammonia synthesis loop g| 169 -- g| 6.1.5 t| Integrated ammonia plant g| 169 -- g| 6.1.6 t| Applications of ammonia g| 173 -- g| 6.2 t| Methanol g| 180 -- g| 6.2.2 t| Thermodynamics g| 180 -- g| 6.2.3 t| Synthesis gas for methanol production g| 183 -- g| 6.2.4 t| Methanol synthesis g| 184 -- g| 6.2.5 t| Applications of methanol g| 187 -- g| 6.3 t| Fischer--Tropsch process g| 193 -- g| 6.3.1 t| Reactions and thermodynamics g| 194 -- g| 6.3.2 t| Reactors used in Fischer--Tropsch synthesis g| 196 -- g| 6.3.3 t| Carbon removal g| 197 -- g| 6.3.4 t| Processes g| 198 -- g| 6.3.5 t| Future developments g| 201 -- g| 7 t| Inorganic Bulk Chemicals g| 205 -- g| 7.1 t| Sulfuric acid g| 205 -- g| 7.1.1 t| Reactions and thermodynamics g| 206 -- g| 7.1.2 t| SO[subscript 2] conversion reactor g| 207 -- g| 7.1.3 t| Modern sulfuric acid production process g| 208 -- g| 7.1.4 t| Catalyst deactivation g| 210 -- g| 7.2 t| Nitric acid g| 210 -- g| 7.2.1 t| Reactions and thermodynamics g| 210 -- g| 7.2.2 t| Processes g| 212 -- g| 7.2.3 t| NO[subscript x] abatement g| 215 -- g| 8 t| Homogeneous Catalysis g| 219 -- g| 8.2 t| Wacker oxidation g| 221 -- g| 8.2.2 t| Processes g| 224 -- g| 8.3 t| Acetic acid production g| 228 -- g| 8.3.2 t| Methanol carbonylation process g| 230 -- g| 8.3.3 t| Process economics g| 235 -- g| 8.4 t| Hydroformylation g| 235 -- g| 8.4.2 t| Thermodynamics g| 237 -- g| 8.4.3 t| Catalyst development g| 237 -- g| 8.4.4 t| Processes g| 239 -- g| 8.5 t| Dimethyl terephthalate and terephthalic acid production g| 244 -- g| 8.5.2 t| Conversion of p-toluic acid intermediate g| 246 -- g| 8.5.3 t| Processes g| 247 -- g| 8.5.4 t| Process comparison g| 249 -- g| 8.6 t| Review of reactors used in homogeneous catalysis g| 250 -- g| 8.6.1 t| Choice of reactor g| 250 -- g| 8.6.2 t| Exchanging heat g| 252 -- g| 8.7 t| Review of catalyst/product separation methods g| 252 -- g| 8.7.1 t| Current separation techniques g| 253 -- g| 8.7.2 t| Future developments g| 254 -- g| 9 t| Heterogeneous Catalysis--Concepts and Examples g| 257 -- g| 9.2 t| Catalyst design g| 258 -- g| 9.2.1 t| Catalyst size and shape g| 258 -- g| 9.2.2 t| Mechanical properties of catalyst particles g| 260 -- g| 9.3 t| Reactor types and their characteristics g| 260 -- g| 9.3.1 t| Reactor types g| 261 -- g| 9.3.2 t| Exchanging heat g| 263 -- g| 9.3.3 t| Role of catalyst deactivation g| 265 -- g| 9.3.4 t| Other issues g| 267 -- g| 9.4 t| Novel developments in reactor technology g| 268 -- g| 9.4.1 t| Adiabatic reactor with periodic flow reversal g| 269 -- g| 9.4.2 t| Structured catalytic reactors g| 270 -- g| 9.4.3 t| Hybrid systems g| 272 -- g| 9.5 t| Selected examples of heterogeneous catalysis g| 277 -- g| 9.5.1 t| Ethylbenzene and styrene production g| 277 -- g| 9.5.2 t| Selective oxidations g| 286 -- g| 9.5.3 t| Monolith applications g| 294 -- g| 10 t| Fine Chemistry g| 307 -- g| 10.2 t| Plants for the production of fine chemicals g| 312 -- g| 10.3 t| Batch reactor design g| 316 -- g| 10.3.1 t| Mechanically stirred batch reactors g| 316 -- g| 10.3.2 t| Batch reactors for gas-liquid-solid systems g| 318 -- g| 10.4 t| Batch reactor scale-up g| 320 -- g| 10.4.1 t| Temperature control g| 322 -- g| 10.4.2 t| Heat transfer g| 322 -- g| 10.4.3 t| Example of the scale-up of a batch and semi-batch reactor g| 323 -- g| 10.5 t| Safety aspects of fine chemicals g| 327 -- g| 10.5.1 t| Thermal risks in the production of chemicals g| 328 -- g| 10.5.2 t| Safety and process development g| 328 -- g| 10.5.3 t| Summary of scale-up of batch reactors g| 330 -- g| 11 t| Polymerization Processes g| 333 -- g| 11.2 t| Polymerization reactions g| 334 -- g| 11.2.1 t| Types of polymerization g| 334 -- g| 11.2.2 t| Mechanisms of chain-growth polymerization g| 336 -- g| 11.3 t| Polyethenes - background information g| 339 -- g| 11.3.1 t| Catalyst development g| 339 -- g| 11.3.2 t| Classification and properties g| 339 -- g| 11.3.3 t| Applications g| 341 -- g| 11.4 t| Processes for the production of polyethenes g| 341 -- g| 11.4.1 t| Monomer production and purification g| 342 -- g| 11.4.2 t| Polymerization--exothermicity g| 342 -- g| 11.4.3 t| Production of LDPE g| 343 -- g| 11.4.4 t| Production of HDPE and LLDPE g| 348 -- g| 11.4.5 t| Economics of polyethene production processes g| 350 -- g| 12 t| Biotechnology g| 353 -- g| 12.2 t| Conversion Processes g| 355 -- g| 12.2.2 t| Mode of operation g| 356 -- g| 12.2.3 t| Type of reactor g| 357 -- g| 12.2.4 t| Sterilization g| 362 -- g| 12.3 t| Fermentation technology--cell biomass (bakers' yeast production) g| 363 -- g| 12.3.1 t| Process layout g| 364 -- g| 12.3.2 t| Cultivation equipment g| 365 -- g| 12.3.3 t| Downstream processing g| 365 -- g| 12.4 t| Fermentation technology--metabolic products (biomass as renewable energy source) g| 366 -- g| 12.4.1 t| Ethanol g| 366 -- g| 12.4.2 t| Biogas g| 367 -- g| 12.5 t| Environmental application--wastewater treatment g| 368 -- g| 12.5.2 t| Process layout g| 369 -- g| 12.5.3 t| Biological treatment processes g| 370 -- g| 12.6 t| Enzyme technology--biocatalysts for transformations g| 376 -- g| 12.6.1 t| General aspects g| 376 -- g| 12.6.2 t| Production of L-amino acids g| 378 -- g| 12.6.3 t| Production of artificial sweeteners g| 379 -- g| 13 t| Process Development g| 387 -- g| 13.1 t| Dependence of strategy on product type and raw materials g| 387 -- g| 13.2 t| Course of process development g| 389 -- g| 13.3 t| Development of individual steps g| 391 -- g| 13.3.1 t| Exploratory phase g| 392 -- g| 13.3.2 t| From process concept to preliminary flow sheet g| 392 -- g| 13.3.3 t| Pilot plants/miniplants g| 395 -- g| 13.4 t| Scale-up g| 401 -- g| 13.4.1 t| Reactors with a single fluid phase g| 402 -- g| 13.4.2 t| Fixed-bed catalytic reactors g| 404 -- g| 13.4.3 t| Catalyst stability and accumulation of impurities g| 408 -- g| 13.5 t| Safety and loss prevention g| 408 -- g| 13.5.2 t| Safety issues g| 409 -- g| 13.5.3 t| Reactivity hazards g| 415 -- g| 13.5.4 t| Design approaches to safety g| 417 -- g| 13.6 t| Process evaluation g| 419 -- g| 13.6.2 t| Capital cost estimation g| 420 -- g| 13.6.3 t| Operating costs and earnings g| 426 -- g| 13.6.4 t| Profitability measures g| 430 -- g| 13.7 t| Current and future trends g| 431 -- g| Appendix A t| Chemical industry--Figures g| 437.
    596
      
      
    a| 5
    650
      
    0
    a| Chemical processes.
    700
    1
      
    a| Makkee, Michiel.
    700
    1
      
    a| Diepen, Annelies van.
    999
      
      
    a| TP155.7 .M68 2001 w| LC i| X004523589 l| STACKS m| SCI-ENG t| BOOK
▾See more
▴See less

Availability

Google Preview

Google Books Preview
Library Location Map Availability Call Number
Brown Science and Engineering Stacks N/A Available