Item Details

The Physics of Particle Accelerators: An Introduction

Klaus Wille ; translated by Jason McFall
Format
Book
Published
New York : Oxford University Press, 2000.
Language
English
German (translated from)
Uniform Title
Physik Der Teilchenbeschleuniger und Synchrotronstrahlungsquellen English
ISBN
0198505507, 0198505493 (pbk.)
Contents
  • 1.1 Importance of high energy particles in fundamental research 1
  • 1.2 Forces used in particle acceleration 3
  • 1.3 Overview of the development of accelerators 4
  • 1.3.1 Direct-voltage accelerator 5
  • 1.3.2 Cockroft-Walton cascade generator 6
  • 1.3.3 Marx generator 7
  • 1.3.4 Van de Graaff accelerator 8
  • 1.3.5 Linear accelerator 9
  • 1.3.6 Cyclotron 13
  • 1.3.7 Microtron 16
  • 1.3.8 Betatron 17
  • 1.3.9 Synchrotron 19
  • 1.4 Particle production by colliding beams 22
  • 1.4.1 Physics of particle collisions 22
  • 1.4.2 Storage ring 25
  • 1.4.3 Linear collider 27
  • 2 Synchrotron radiation 30
  • 2.1 Radiation from relativistic particles 30
  • 2.1.1 Linear acceleration 31
  • 2.1.2 Circular acceleration 32
  • 2.2 Angular distribution of synchrotron radiation 35
  • 2.3 Time dependence and frequency spectrum of the radiation 37
  • 2.4 Storage rings for synchrotron radiation 40
  • 3 Linear beam optics 44
  • 3.1 Charged particle motion in a magnetic field 44
  • 3.2 Equation of motion in a co-moving coordinate system 46
  • 3.3 Beam steering magnets 50
  • 3.3.1 Calculation of magnetic fields for beam steering 51
  • 3.3.2 Conventional ferromagnets 53
  • 3.3.3 Superconducting magnets 58
  • 3.4 Particle trajectories and transfer matrices 65
  • 3.5 Calculation of a particle trajectory through a system of many beam-steering magnets 72
  • 3.6 Dispersion and momentum compaction factor 74
  • 3.7 Beta function and betatron oscillation 77
  • 3.8 Phase space ellipse and Liouville's theorem 80
  • 3.9 Beam cross-section and emittance 81
  • 3.10 Evolution of the beta function through the magnet structure 83
  • 3.11 Determination of the transfer matrix from the beta function 88
  • 3.12 Matching of beam optics 89
  • 3.12.1 One-dimensional case 90
  • 3.12.2 N-dimensional case 91
  • 3.13 Periodicity conditions in circular accelerators 93
  • 3.13.1 Periodic solution 93
  • 3.13.2 Symmetric solution 95
  • 3.13.3 Worked example: beam optics of a circular accelerator with a FODO structure 97
  • 3.14 Tune and optical resonances 101
  • 3.14.1 Periodic solution of Hill's differential equation 101
  • 3.14.2 Floquet's transformation 103
  • 3.14.3 Optical resonances 104
  • 3.15 Effect of magnetic field errors on beam optics 112
  • 3.15.1 Effect of dipole kicks 112
  • 3.15.2 Effect of quadrupole field errors 115
  • 3.16 Chromaticity of beam optics and its compensation 120
  • 3.17 Restriction of the dynamic aperture by sextupoles 123
  • 3.18 Local orbit bumps 127
  • 3.18.1 Examples of local orbit bumps 132
  • 4 Injection and extraction 136
  • 4.1 Process of injection and extraction 136
  • 4.2 Particle sources 137
  • 4.3 Fundamental problem of injection 141
  • 4.4 Injection of high proton and ion currents by 'stacking' 142
  • 4.5 Injection of proton beams using stripping foils 144
  • 4.6 Injection into an electron storage ring 145
  • 4.7 Kicker and septum magnets 147
  • 5 RF systems for particle acceleration 152
  • 5.1 Waveguides and their properties 152
  • 5.1.1 Rectangular waveguides 154
  • 5.1.2 Cylindrical waveguides 156
  • 5.2 Resonant cavities 158
  • 5.2.1 Rectangular waveguides as resonant cavities 158
  • 5.2.2 Cylindrical resonant cavities 159
  • 5.3 Accelerating structures for linacs 163
  • 5.4 Klystrons as power generators for accelerators 169
  • 5.5 Klystron modulator 171
  • 5.6 Phase focusing and synchrotron frequency 176
  • 5.7 Region of phase stability (separatrix) 180
  • 6 Radiative effects 185
  • 6.1 Damping of synchrotron oscillations 185
  • 6.2 Damping of betatron oscillations 188
  • 6.3 Robinson theorem 191
  • 6.4 Beam emittance 192
  • 6.4.1 Lower limit of the beam emittance: the low emittance lattice 197
  • 7 Luminosity 202
  • 7.1 Beam current restriction due to the space charge effect 204
  • 7.2 'Mini-beta' principle 213
  • 8 Wigglers and undulators 217
  • 8.1 Wiggler or undulator field 217
  • 8.2 Equation of motion in a wiggler or undulator 222
  • 8.3 Undulator radiation 227
  • 9 Free electron laser (FEL) 232
  • 9.1 Conditions for energy transfer in the FEL 233
  • 9.2 Equation of motion for electrons in the FEL (pendulum equation) 236
  • 9.3 Amplification of the FEL (low gain approximation) 241
  • 9.4 Madey theorem 247
  • 9.5 FEL amplification in the high-gain regime 248
  • 9.6 FEL amplifier and FEL oscillator 250
  • 9.7 Optical klystron 252
  • 9.8 Time structure of the FEL radiation 254
  • 10 Diagnostics 258
  • 10.1 Observation of the beam and measurement of the beam current 258
  • 10.1.1 Fluorescent screen 258
  • 10.1.2 Faraday cup 259
  • 10.1.3 Wall current monitor 261
  • 10.1.4 Beam transformer 262
  • 10.1.5 Current transformer 264
  • 10.1.6 Measurement cavity 266
  • 10.2 Determination of the beam lifetime in a storage ring 269
  • 10.3 Measurement of the momentum and energy of a particle beam 271
  • 10.3.1 Magnetic spectrometer 271
  • 10.3.2 Energy measurement by spin depolarization 273
  • 10.4 Measurement and correction of the beam position 274
  • 10.4.1 Transverse beam position measurement 275
  • 10.4.2 Correction of the transverse field position 281
  • 10.5 Measurement of the betatron frequency and the tune Q 287
  • 10.6 Measurement of the synchrotron frequency 291
  • 10.7 Measurement of the optical parameters of the beam 294
  • 10.7.1 Measurement of the dispersion 294
  • 10.7.2 Measurement of the beta function 295
  • 10.7.3 Measurement of the chromaticity 296
  • A Maxwell's equations 297
  • B Important relations in special relativity 299
  • C General equation of an ellipse in phase space 302.
Description
xiii, 315 p. : ill. ; 24 cm.
Notes
Includes bibliographical references (p. [304]-309) and index.
Technical Details
  • Access in Virgo Classic

  • LEADER 06953pam a2200337 a 4500
    001 u3720166
    003 SIRSI
    005 20010425090828.0
    008 001024r20001996nyua b 001 0 eng
    010
      
      
    a| 00052438
    020
      
      
    a| 0198505507
    020
      
      
    a| 0198505493 (pbk.)
    035
      
      
    a| (Sirsi) i0198505507
    035
      
      
    a| (OCoLC)45248315
    040
      
      
    a| DLC c| DLC d| NhCcYBP d| MvI
    041
    1
      
    a| eng h| ger
    050
    0
    0
    a| QC787.P3 b| W55 2000
    082
    0
    0
    a| 539.7/3 2| 21
    090
      
      
    a| SCIENG/QC787.P3 b| W55 2000
    100
    1
      
    a| Wille, Klaus, c| prof.
    240
    1
    0
    a| Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen. l| English
    245
    1
    4
    a| The physics of particle accelerators : b| an introduction / c| Klaus Wille ; translated by Jason McFall.
    260
      
      
    a| New York : b| Oxford University Press, c| 2000.
    300
      
      
    a| xiii, 315 p. : b| ill. ; c| 24 cm.
    504
      
      
    a| Includes bibliographical references (p. [304]-309) and index.
    505
    0
    0
    g| 1.1 t| Importance of high energy particles in fundamental research g| 1 -- g| 1.2 t| Forces used in particle acceleration g| 3 -- g| 1.3 t| Overview of the development of accelerators g| 4 -- g| 1.3.1 t| Direct-voltage accelerator g| 5 -- g| 1.3.2 t| Cockroft-Walton cascade generator g| 6 -- g| 1.3.3 t| Marx generator g| 7 -- g| 1.3.4 t| Van de Graaff accelerator g| 8 -- g| 1.3.5 t| Linear accelerator g| 9 -- g| 1.3.6 t| Cyclotron g| 13 -- g| 1.3.7 t| Microtron g| 16 -- g| 1.3.8 t| Betatron g| 17 -- g| 1.3.9 t| Synchrotron g| 19 -- g| 1.4 t| Particle production by colliding beams g| 22 -- g| 1.4.1 t| Physics of particle collisions g| 22 -- g| 1.4.2 t| Storage ring g| 25 -- g| 1.4.3 t| Linear collider g| 27 -- g| 2 t| Synchrotron radiation g| 30 -- g| 2.1 t| Radiation from relativistic particles g| 30 -- g| 2.1.1 t| Linear acceleration g| 31 -- g| 2.1.2 t| Circular acceleration g| 32 -- g| 2.2 t| Angular distribution of synchrotron radiation g| 35 -- g| 2.3 t| Time dependence and frequency spectrum of the radiation g| 37 -- g| 2.4 t| Storage rings for synchrotron radiation g| 40 -- g| 3 t| Linear beam optics g| 44 -- g| 3.1 t| Charged particle motion in a magnetic field g| 44 -- g| 3.2 t| Equation of motion in a co-moving coordinate system g| 46 -- g| 3.3 t| Beam steering magnets g| 50 -- g| 3.3.1 t| Calculation of magnetic fields for beam steering g| 51 -- g| 3.3.2 t| Conventional ferromagnets g| 53 -- g| 3.3.3 t| Superconducting magnets g| 58 -- g| 3.4 t| Particle trajectories and transfer matrices g| 65 -- g| 3.5 t| Calculation of a particle trajectory through a system of many beam-steering magnets g| 72 -- g| 3.6 t| Dispersion and momentum compaction factor g| 74 -- g| 3.7 t| Beta function and betatron oscillation g| 77 -- g| 3.8 t| Phase space ellipse and Liouville's theorem g| 80 -- g| 3.9 t| Beam cross-section and emittance g| 81 -- g| 3.10 t| Evolution of the beta function through the magnet structure g| 83 -- g| 3.11 t| Determination of the transfer matrix from the beta function g| 88 -- g| 3.12 t| Matching of beam optics g| 89 -- g| 3.12.1 t| One-dimensional case g| 90 -- g| 3.12.2 t| N-dimensional case g| 91 -- g| 3.13 t| Periodicity conditions in circular accelerators g| 93 -- g| 3.13.1 t| Periodic solution g| 93 -- g| 3.13.2 t| Symmetric solution g| 95 -- g| 3.13.3 t| Worked example: beam optics of a circular accelerator with a FODO structure g| 97 -- g| 3.14 t| Tune and optical resonances g| 101 -- g| 3.14.1 t| Periodic solution of Hill's differential equation g| 101 -- g| 3.14.2 t| Floquet's transformation g| 103 -- g| 3.14.3 t| Optical resonances g| 104 -- g| 3.15 t| Effect of magnetic field errors on beam optics g| 112 -- g| 3.15.1 t| Effect of dipole kicks g| 112 -- g| 3.15.2 t| Effect of quadrupole field errors g| 115 -- g| 3.16 t| Chromaticity of beam optics and its compensation g| 120 -- g| 3.17 t| Restriction of the dynamic aperture by sextupoles g| 123 -- g| 3.18 t| Local orbit bumps g| 127 -- g| 3.18.1 t| Examples of local orbit bumps g| 132 -- g| 4 t| Injection and extraction g| 136 -- g| 4.1 t| Process of injection and extraction g| 136 -- g| 4.2 t| Particle sources g| 137 -- g| 4.3 t| Fundamental problem of injection g| 141 -- g| 4.4 t| Injection of high proton and ion currents by 'stacking' g| 142 -- g| 4.5 t| Injection of proton beams using stripping foils g| 144 -- g| 4.6 t| Injection into an electron storage ring g| 145 -- g| 4.7 t| Kicker and septum magnets g| 147 -- g| 5 t| RF systems for particle acceleration g| 152 -- g| 5.1 t| Waveguides and their properties g| 152 -- g| 5.1.1 t| Rectangular waveguides g| 154 -- g| 5.1.2 t| Cylindrical waveguides g| 156 -- g| 5.2 t| Resonant cavities g| 158 -- g| 5.2.1 t| Rectangular waveguides as resonant cavities g| 158 -- g| 5.2.2 t| Cylindrical resonant cavities g| 159 -- g| 5.3 t| Accelerating structures for linacs g| 163 -- g| 5.4 t| Klystrons as power generators for accelerators g| 169 -- g| 5.5 t| Klystron modulator g| 171 -- g| 5.6 t| Phase focusing and synchrotron frequency g| 176 -- g| 5.7 t| Region of phase stability (separatrix) g| 180 -- g| 6 t| Radiative effects g| 185 -- g| 6.1 t| Damping of synchrotron oscillations g| 185 -- g| 6.2 t| Damping of betatron oscillations g| 188 -- g| 6.3 t| Robinson theorem g| 191 -- g| 6.4 t| Beam emittance g| 192 -- g| 6.4.1 t| Lower limit of the beam emittance: the low emittance lattice g| 197 -- g| 7 t| Luminosity g| 202 -- g| 7.1 t| Beam current restriction due to the space charge effect g| 204 -- g| 7.2 t| 'Mini-beta' principle g| 213 -- g| 8 t| Wigglers and undulators g| 217 -- g| 8.1 t| Wiggler or undulator field g| 217 -- g| 8.2 t| Equation of motion in a wiggler or undulator g| 222 -- g| 8.3 t| Undulator radiation g| 227 -- g| 9 t| Free electron laser (FEL) g| 232 -- g| 9.1 t| Conditions for energy transfer in the FEL g| 233 -- g| 9.2 t| Equation of motion for electrons in the FEL (pendulum equation) g| 236 -- g| 9.3 t| Amplification of the FEL (low gain approximation) g| 241 -- g| 9.4 t| Madey theorem g| 247 -- g| 9.5 t| FEL amplification in the high-gain regime g| 248 -- g| 9.6 t| FEL amplifier and FEL oscillator g| 250 -- g| 9.7 t| Optical klystron g| 252 -- g| 9.8 t| Time structure of the FEL radiation g| 254 -- g| 10 t| Diagnostics g| 258 -- g| 10.1 t| Observation of the beam and measurement of the beam current g| 258 -- g| 10.1.1 t| Fluorescent screen g| 258 -- g| 10.1.2 t| Faraday cup g| 259 -- g| 10.1.3 t| Wall current monitor g| 261 -- g| 10.1.4 t| Beam transformer g| 262 -- g| 10.1.5 t| Current transformer g| 264 -- g| 10.1.6 t| Measurement cavity g| 266 -- g| 10.2 t| Determination of the beam lifetime in a storage ring g| 269 -- g| 10.3 t| Measurement of the momentum and energy of a particle beam g| 271 -- g| 10.3.1 t| Magnetic spectrometer g| 271 -- g| 10.3.2 t| Energy measurement by spin depolarization g| 273 -- g| 10.4 t| Measurement and correction of the beam position g| 274 -- g| 10.4.1 t| Transverse beam position measurement g| 275 -- g| 10.4.2 t| Correction of the transverse field position g| 281 -- g| 10.5 t| Measurement of the betatron frequency and the tune Q g| 287 -- g| 10.6 t| Measurement of the synchrotron frequency g| 291 -- g| 10.7 t| Measurement of the optical parameters of the beam g| 294 -- g| 10.7.1 t| Measurement of the dispersion g| 294 -- g| 10.7.2 t| Measurement of the beta function g| 295 -- g| 10.7.3 t| Measurement of the chromaticity g| 296 -- g| A t| Maxwell's equations g| 297 -- g| B t| Important relations in special relativity g| 299 -- g| C t| General equation of an ellipse in phase space g| 302.
    596
      
      
    a| 5
    650
      
    0
    a| Particle accelerators.
    999
      
      
    a| QC787 .P3 W55 2000 w| LC i| X004527115 l| STACKS m| SCI-ENG t| BOOK

Availability

Google Preview

Library Location Map Availability Call Number
Brown Science and Engineering Stacks N/A Available