Item Details

Electrons and Phonons: The Theory of Transport Phenomena in Solids

by J.M. Ziman
Format
Book
Published
Oxford : Clarendon Press ; New York : Oxford University Press, 2001.
Language
English
Series
Oxford Classic Texts in the Physical Sciences
ISBN
0198507798 (acid-free paper)
Contents
  • I. Phonons
  • 1.1. Solid matter as a gas of excitations 1
  • 1.2. Crystal lattice 3
  • 1.3. Dynamics of a linear lattice 6
  • 1.4. Dynamics of space lattices 16
  • 1.5. Reciprocal lattice 22
  • 1.6. Normal coordinates in three dimensions 27
  • 1.7. General properties of lattice waves 31
  • 1.8. Calculation and observation of the dispersion of lattice waves 38
  • 1.9. Lattice specific heat, and the frequency spectrum 43
  • 1.10. Vibrations of an elastic continuum 49
  • 1.11. Debye theory, and similar approximations 52
  • II. Electrons
  • 2.1. Free electron model 62
  • 2.2. Effect of the periodic lattice 66
  • 2.3. Brillouin zones 69
  • 2.4. Band structure and the Fermi surface 73
  • 2.5. Coulomb interaction 80
  • 2.6. Tight-binding method 82
  • 2.7. Cellular method 85
  • 2.8. Plane-wave methods 88
  • 2.9. Dynamical properties of electrons 92
  • 2.10. Fermi-Dirac statistics 100
  • 2.11. Experimental study of the Fermi surface 105
  • 2.12. Electronic structure of the elements 109
  • III. Phonon-Phonon Interaction
  • 3.1. General theory of transition probabilities 128
  • 3.2. Anharmonic lattice forces 130
  • 3.3. Effects of the selection rules 134
  • 3.4. Interaction with optical modes 144
  • 3.5. Four-phonon processes 146
  • 3.6. Elastic anharmonicity 147
  • 3.7. Thermal expansion 152
  • 3.8. Absorption of sound in solids 156
  • IV. Electron-Electron Interaction
  • 4.1. Screening 159
  • 4.2. Plasma oscillations 161
  • 4.3. Collective coordinates 162
  • 4.4. Short-range interaction 166
  • 4.5. Screening in real solids 168
  • 4.6. Electron-electron scattering 170
  • 4.7. Scattering by bound electrons 172
  • V. Electron-Phonon Interaction
  • 5.1. Adiabatic principle 174
  • 5.2. Interaction terms 179
  • 5.3. Matrix element for electron-phonon scattering 181
  • 5.4. Rigid ion approximation 183
  • 5.5. Deformable ion 188
  • 5.6. Deformation potential 191
  • 5.7. Bardeen's self-consistent calculation 197
  • 5.8. Electron-lattice interaction in metals 202
  • 5.9. Deformation potentials in semiconductors 205
  • 5.10. Interaction of carriers with optical modes 206
  • 5.11. Interaction with polar modes 209
  • 5.12. When does the adiabatic principle fail? 212
  • VI. Scattering by Lattice Imperfections
  • 6.1. Types of imperfection 220
  • 6.2. Point imperfections and phonons 221
  • 6.3. Point imperfections and electrons 223
  • 6.4. Dislocations and phonons 228
  • 6.5. Dislocations and electrons 235
  • 6.6. Stacking faults and twin boundaries 239
  • 6.7. Grain boundaries 244
  • 6.8. Disordered alloys 246
  • 6.9. Amorphous structures 248
  • VII. Formal Transport Theory
  • 7.1. Kinetic method 257
  • 7.2. Distribution functions 261
  • 7.3. Boltzmann equation 264
  • 7.4. Elementary solution 267
  • 7.5. Macroscopic transport coefficients 270
  • 7.6. Kelvin-Onsager relations 273
  • 7.7. Variational principle 275
  • 7.8. Thermodynamic formulation of the variational principle 280
  • 7.9. General variational principle applied 283
  • 7.10. Matthiessen's rule 285
  • VIII. Lattice Conduction
  • 8.1. Thermal conduction in insulators 288
  • 8.2. Calculation of Umklapp resistance 292
  • 8.3. Problem of long longitudinal waves 298
  • 8.4. Experimental study of Umklapp resistance 302
  • 8.5. Theory of imperfection resistance 306
  • 8.6. Isotopes and other point imperfections 310
  • 8.7. Imperfect crystals and glasses 316
  • 8.8. Other heat conduction mechanisms in insulators 319
  • 8.9. Lattice conduction in metals 319
  • 8.10. Lattice conduction in semi-metals and semiconductors 326
  • IX. Electronic Conduction in Metals
  • 9.1. Transport properties of metals 334
  • 9.2. Residual resistance in alloys 337
  • 9.3. Resistance-minimum phenomenon 344
  • 9.4. Residual resistance from crystalC imperfections 350
  • 9.5. Lattico resistance: the Bloch theory 357
  • 9.6. Temperature variation of lattice resistance: amendment of the Bloch formula 367
  • 9.7. Magnitude of the lattice resistivity 370
  • 9.8. Electrical resistivity of the transition metals 376
  • 9.9. Thermal conductivity: the Wiedemann-Franz law 382
  • 9.10. Thermal conductivity: lattice scattering 385
  • 9.11. Thermopower 398
  • 9.12. Thermopower at low temperatures 403
  • 9.13. Phonon drag 407
  • 9.14. Electron-electron scattering 412
  • 9.15. High temperatures and pressures 418
  • X. Mobility in Semiconductors
  • 10.1. Scope of the investigation 421
  • 10.2. Spherical energy surfaces 423
  • 10.3. Scattering by impurities and imperfections 428
  • 10.4. Lattice scattering 431
  • 10.5. Scattering by optical modes: polar crystals 434
  • 10.6. Scattering by optical modes: covalent semiconductors 439
  • 10.7. Many-valley model 440
  • 10.8. Piezo-resistance 444
  • 10.9. Phonon drag 447
  • XI. Size and Surface Effects
  • 11.1. Limitation of the mean free path 450
  • 11.2. General theory 452
  • 11.3. Rough and smooth 456
  • 11.4. Boundary scattering of phonons 460
  • 11.5. Electrical conductivity of thin wires and films 465
  • 11.6. Galvanomagnetomorphic effect 469
  • 11.7. Anomalous skin effect 474
  • XII. Transport Phenomena in a Magnetic Field
  • 12.1. Elementary theory 483
  • 12.2. Hall effect 486
  • 12.3. Magnetoresistance 490
  • 12.4. Thermomagnetic phenomena 495
  • 12.5. Method of Jones & Zener 501
  • 12.6. Variational principle in a magnetic field 508
  • 12.7. Effects in strong fields 512
  • 12.8. Quantization of electron orbits 521.
Description
xiv, 554 p. : ill. ; 24 cm.
Notes
Includes bibliographical references and indexes.
Technical Details
  • Access in Virgo Classic

  • LEADER 06773nam a2200325 a 4500
    001 u3711760
    003 SIRSI
    005 20010618102900.0
    008 010522r20011960enka b 001 0 eng
    010
      
      
    a| 2001268325
    020
      
      
    a| 0198507798 (acid-free paper)
    035
      
      
    a| (Sirsi) i0198507798
    035
      
      
    a| (OCoLC)47066811
    040
      
      
    a| DLC c| DLC d| CIT d| MvI
    050
    0
    0
    a| QC175.2 b| .Z55 2001
    100
    1
      
    a| Ziman, J. M. q| (John M.), d| 1925-2005
    245
    1
    0
    a| Electrons and phonons : b| the theory of transport phenomena in solids / c| by J.M. Ziman.
    260
      
      
    a| Oxford : b| Clarendon Press ; a| New York : b| Oxford University Press, c| 2001.
    300
      
      
    a| xiv, 554 p. : b| ill. ; c| 24 cm.
    440
      
    0
    a| Oxford classic texts in the physical sciences
    504
      
      
    a| Includes bibliographical references and indexes.
    505
    0
    0
    g| I. t| Phonons -- g| 1.1. t| Solid matter as a gas of excitations g| 1 -- g| 1.2. t| Crystal lattice g| 3 -- g| 1.3. t| Dynamics of a linear lattice g| 6 -- g| 1.4. t| Dynamics of space lattices g| 16 -- g| 1.5. t| Reciprocal lattice g| 22 -- g| 1.6. t| Normal coordinates in three dimensions g| 27 -- g| 1.7. t| General properties of lattice waves g| 31 -- g| 1.8. t| Calculation and observation of the dispersion of lattice waves g| 38 -- g| 1.9. t| Lattice specific heat, and the frequency spectrum g| 43 -- g| 1.10. t| Vibrations of an elastic continuum g| 49 -- g| 1.11. t| Debye theory, and similar approximations g| 52 -- g| II. t| Electrons -- g| 2.1. t| Free electron model g| 62 -- g| 2.2. t| Effect of the periodic lattice g| 66 -- g| 2.3. t| Brillouin zones g| 69 -- g| 2.4. t| Band structure and the Fermi surface g| 73 -- g| 2.5. t| Coulomb interaction g| 80 -- g| 2.6. t| Tight-binding method g| 82 -- g| 2.7. t| Cellular method g| 85 -- g| 2.8. t| Plane-wave methods g| 88 -- g| 2.9. t| Dynamical properties of electrons g| 92 -- g| 2.10. t| Fermi-Dirac statistics g| 100 -- g| 2.11. t| Experimental study of the Fermi surface g| 105 -- g| 2.12. t| Electronic structure of the elements g| 109 -- g| III. t| Phonon-Phonon Interaction -- g| 3.1. t| General theory of transition probabilities g| 128 -- g| 3.2. t| Anharmonic lattice forces g| 130 -- g| 3.3. t| Effects of the selection rules g| 134 -- g| 3.4. t| Interaction with optical modes g| 144 -- g| 3.5. t| Four-phonon processes g| 146 -- g| 3.6. t| Elastic anharmonicity g| 147 -- g| 3.7. t| Thermal expansion g| 152 -- g| 3.8. t| Absorption of sound in solids g| 156 -- g| IV. t| Electron-Electron Interaction -- g| 4.1. t| Screening g| 159 -- g| 4.2. t| Plasma oscillations g| 161 -- g| 4.3. t| Collective coordinates g| 162 -- g| 4.4. t| Short-range interaction g| 166 -- g| 4.5. t| Screening in real solids g| 168 -- g| 4.6. t| Electron-electron scattering g| 170 -- g| 4.7. t| Scattering by bound electrons g| 172 -- g| V. t| Electron-Phonon Interaction -- g| 5.1. t| Adiabatic principle g| 174 -- g| 5.2. t| Interaction terms g| 179 -- g| 5.3. t| Matrix element for electron-phonon scattering g| 181 -- g| 5.4. t| Rigid ion approximation g| 183 -- g| 5.5. t| Deformable ion g| 188 -- g| 5.6. t| Deformation potential g| 191 -- g| 5.7. t| Bardeen's self-consistent calculation g| 197 -- g| 5.8. t| Electron-lattice interaction in metals g| 202 -- g| 5.9. t| Deformation potentials in semiconductors g| 205 -- g| 5.10. t| Interaction of carriers with optical modes g| 206 -- g| 5.11. t| Interaction with polar modes g| 209 -- g| 5.12. t| When does the adiabatic principle fail? g| 212 -- g| VI. t| Scattering by Lattice Imperfections -- g| 6.1. t| Types of imperfection g| 220 -- g| 6.2. t| Point imperfections and phonons g| 221 -- g| 6.3. t| Point imperfections and electrons g| 223 -- g| 6.4. t| Dislocations and phonons g| 228 -- g| 6.5. t| Dislocations and electrons g| 235 -- g| 6.6. t| Stacking faults and twin boundaries g| 239 -- g| 6.7. t| Grain boundaries g| 244 -- g| 6.8. t| Disordered alloys g| 246 -- g| 6.9. t| Amorphous structures g| 248 -- g| VII. t| Formal Transport Theory -- g| 7.1. t| Kinetic method g| 257 -- g| 7.2. t| Distribution functions g| 261 -- g| 7.3. t| Boltzmann equation g| 264 -- g| 7.4. t| Elementary solution g| 267 -- g| 7.5. t| Macroscopic transport coefficients g| 270 -- g| 7.6. t| Kelvin-Onsager relations g| 273 -- g| 7.7. t| Variational principle g| 275 -- g| 7.8. t| Thermodynamic formulation of the variational principle g| 280 -- g| 7.9. t| General variational principle applied g| 283 -- g| 7.10. t| Matthiessen's rule g| 285 -- g| VIII. t| Lattice Conduction -- g| 8.1. t| Thermal conduction in insulators g| 288 -- g| 8.2. t| Calculation of Umklapp resistance g| 292 -- g| 8.3. t| Problem of long longitudinal waves g| 298 -- g| 8.4. t| Experimental study of Umklapp resistance g| 302 -- g| 8.5. t| Theory of imperfection resistance g| 306 -- g| 8.6. t| Isotopes and other point imperfections g| 310 -- g| 8.7. t| Imperfect crystals and glasses g| 316 -- g| 8.8. t| Other heat conduction mechanisms in insulators g| 319 -- g| 8.9. t| Lattice conduction in metals g| 319 -- g| 8.10. t| Lattice conduction in semi-metals and semiconductors g| 326 -- g| IX. t| Electronic Conduction in Metals -- g| 9.1. t| Transport properties of metals g| 334 -- g| 9.2. t| Residual resistance in alloys g| 337 -- g| 9.3. t| Resistance-minimum phenomenon g| 344 -- g| 9.4. t| Residual resistance from crystalC imperfections g| 350 -- g| 9.5. t| Lattico resistance: the Bloch theory g| 357 -- g| 9.6. t| Temperature variation of lattice resistance: amendment of the Bloch formula g| 367 -- g| 9.7. t| Magnitude of the lattice resistivity g| 370 -- g| 9.8. t| Electrical resistivity of the transition metals g| 376 -- g| 9.9. t| Thermal conductivity: the Wiedemann-Franz law g| 382 -- g| 9.10. t| Thermal conductivity: lattice scattering g| 385 -- g| 9.11. t| Thermopower g| 398 -- g| 9.12. t| Thermopower at low temperatures g| 403 -- g| 9.13. t| Phonon drag g| 407 -- g| 9.14. t| Electron-electron scattering g| 412 -- g| 9.15. t| High temperatures and pressures g| 418 -- g| X. t| Mobility in Semiconductors -- g| 10.1. t| Scope of the investigation g| 421 -- g| 10.2. t| Spherical energy surfaces g| 423 -- g| 10.3. t| Scattering by impurities and imperfections g| 428 -- g| 10.4. t| Lattice scattering g| 431 -- g| 10.5. t| Scattering by optical modes: polar crystals g| 434 -- g| 10.6. t| Scattering by optical modes: covalent semiconductors g| 439 -- g| 10.7. t| Many-valley model g| 440 -- g| 10.8. t| Piezo-resistance g| 444 -- g| 10.9. t| Phonon drag g| 447 -- g| XI. t| Size and Surface Effects -- g| 11.1. t| Limitation of the mean free path g| 450 -- g| 11.2. t| General theory g| 452 -- g| 11.3. t| Rough and smooth g| 456 -- g| 11.4. t| Boundary scattering of phonons g| 460 -- g| 11.5. t| Electrical conductivity of thin wires and films g| 465 -- g| 11.6. t| Galvanomagnetomorphic effect g| 469 -- g| 11.7. t| Anomalous skin effect g| 474 -- g| XII. t| Transport Phenomena in a Magnetic Field -- g| 12.1. t| Elementary theory g| 483 -- g| 12.2. t| Hall effect g| 486 -- g| 12.3. t| Magnetoresistance g| 490 -- g| 12.4. t| Thermomagnetic phenomena g| 495 -- g| 12.5. t| Method of Jones & Zener g| 501 -- g| 12.6. t| Variational principle in a magnetic field g| 508 -- g| 12.7. t| Effects in strong fields g| 512 -- g| 12.8. t| Quantization of electron orbits g| 521.
    596
      
      
    a| 5
    650
      
    0
    a| Transport theory.
    650
      
    0
    a| Electrons.
    650
      
    0
    a| Phonons.
    994
      
      
    a| Z0 b| VA@
    999
      
      
    a| QC175.2 .Z55 2001 w| LC i| X004477304 l| STACKS m| SCI-ENG t| BOOK

Availability

Google Preview

Library Location Map Availability Call Number
Brown Science and Engineering Stacks N/A Available