Item Details

Print View

Principles of Fluid Mechanics

Andreas N. Alexandrou
Format
Book
Published
Upper Saddle River : Prentice Hall, c2001.
Language
English
ISBN
013801762X
Contents
  • 1.2 Fluid Dynamics and Engineering Analysis and Design 3
  • 1.2.1 Solution Methods 4
  • 1.3 Control Volume Analysis: Open System vs. Closed System 7
  • 1.4 Continuum Assumption, Differential Analysis 8
  • 1.5 Fluid Properties 11
  • 1.6 Dimensions and Systems of Units 23
  • 2 Conservation Laws for Closed Systems 29
  • 2.1 General Conservation Law for a Closed System 29
  • 2.2 Conservation of Mass 31
  • 2.3 Conservation of Linear Momentum 31
  • 2.3.1 Hydrostatics 39
  • 2.3.2 Conservation of Momentum for a Non-Inertial Coordinate System 45
  • 2.4 Conservation of Energy 46
  • 2.5 Second Law of Thermodynamics 52
  • 2.6 Review of Basic Thermodynamic Principles 54
  • 2.6.1 Dynamics of Ideal Gases 55
  • 2.7 Hydrostatic Effects on Submerged Bodies 63
  • 3 Conservation Laws for Open Systems 91
  • 3.1 Reynolds Transport Theorem 91
  • 3.2 General Conservation Law for an Open System 94
  • 3.3 Conservation of Mass 95
  • 3.4 Conservation of Linear Momentum 104
  • 3.4.1 Conservation of Linear Momentum for a Non-Inertial Coordinate System 108
  • 3.5 Conservation of Energy 112
  • 3.5.1 Energy Equation Along a Streamline 117
  • 3.6 Second Law of Thermodynamics 123
  • 4 Differential View of Fluid Motion: Fluid Kinematics and Deformation 139
  • 4.1 Differential View 139
  • 4.2 Position Vector of Fluid Particles 140
  • 4.3 Velocity and Acceleration Fields 141
  • 4.4 Lagrangian and Eulerian Perspectives 146
  • 4.5 Visual Kinematic Concepts 150
  • 4.5.1 Streamlines, Streamfunction 150
  • 4.5.2 Velocity Potential 154
  • 4.5.3 Pathlines, Streaklines 157
  • 4.6 Deformation of Fluid Elements: Translation, Rotation, Strain 161
  • 5 Differential Form of the Conservation Laws 175
  • 5.1 Differential View of the Dynamics of Flow: Internal State of Stress 175
  • 5.1.1 Body Forces on a Differential Control Volume 177
  • 5.1.2 Force on an Arbitrary Fluid Surface 178
  • 5.2 Conservation Laws 179
  • 5.2.1 Conservation of Mass 180
  • 5.2.2 Conservation of Linear Momentum 184
  • 5.2.3 Differential View of Fluid Statics 186
  • 5.2.4 Conservation of Mechanical Energy 191
  • 5.3 Constitutive Relations 192
  • 5.4 Flow Boundary Conditions 197
  • 5.4.1 No-Slip Boundary Condition 197
  • 5.4.2 Applied Surface Forces 199
  • 5.4.3 Surface Tension Forces 202
  • 5.4.4 Free Surface Boundary Conditions 202
  • 5.5 Navier-Stokes Equations 203
  • 5.6 Non-Isothermal Flows 206
  • 5.6.1 Conservation of Total Energy 206
  • 5.6.2 Conservation of Thermal Energy 207
  • 5.6.3 Constitutive Description of Heat Transfer 207
  • 5.6.4 Thermal Boundary Conditions 208
  • 6 Dimensional Analysis of Fluid Systems 214
  • 6.1 Functional Relations using Dimensional Analysis 214
  • 6.1.1 Buckingham-[Pi] Theorem 216
  • 6.2 Scaling and Order-of-Magnitude Analysis 221
  • 6.2.1 Significance of Dimensionless Groups 224
  • 6.3 Similitude, Design of Experiments 226
  • 6.3.1 Incomplete Similarity 230
  • 7 Exact Analytic Solutions 237
  • 7.1 Mathematical Modeling 237
  • 7.2 Poiseuille Flow: Fully Developed Channel Flow 237
  • 7.3 Poiseuille Flow: Fully Developed Pipe Flow 242
  • 7.4 Gravity Flow: Flow Down an Inclined Plane 245
  • 7.5 Film Drawing 249
  • 7.6 Fully Developed Non-Newtonian Channel Flow 252
  • 7.7 Transient Flow: Impulsively Started Flow 257
  • 7.8 Non-Isothermal Poiseuille Flow 260
  • 8 Combined Analytic and Experimental Solutions 266
  • 8.1 Boundary Layer Concept 266
  • 8.1.1 Boundary Layer Theory 267
  • 8.1.2 Approximate Momentum Integral Theory 270
  • 8.2 Laminar Boundary Layer Flow 273
  • 8.2.1 "Exact" Laminar Similarity Solutions 273
  • 8.2.2 Approximate Laminar Boundary Layer Flow 281
  • 8.3 Turbulent Boundary Layer Flow 287
  • 8.3.1 Approximate Turbulent Boundary Layer Flow 290
  • 8.4 Dynamics of External Flows 295
  • 8.4.1 Flow Separations 295
  • 8.4.2 Wake Dynamics 297
  • 8.4.3 Drag and Lift Forces 298
  • 8.4.4 Flow Past a Circular Cylinder 299
  • 8.4.5 Flow Past Bodies with Arbitrary Shapes 303
  • 8.4.6 Fundamentals of Aerodynamic Applications 308
  • 8.5 Internal Flows 315
  • 8.5.1 Energy Considerations in Pipe Flow 315
  • 8.5.2 Major Losses 317
  • 8.5.3 Minor Losses 323
  • 8.5.4 Solution Procedure for Single-Pipe Problems 329
  • 8.5.5 Flow in Piping Networks 334
  • 9 Ideal Inviscid Flow 344
  • 9.1 Inviscid Theory: Euler Equations 344
  • 9.1.1 Euler Equations in Streamline Coordinates 346
  • 9.1.2 Bernoulli Equation 348
  • 9.2 Exact Solutions for Irrotational Inviscid Flows 354
  • 9.2.1 Elementary Flows 355
  • 9.2.2 Superposition of Elementary Flows 363
  • 10 Dynamics of Rotating Fluids: Turbomachinery 381
  • 10.1 Conservation of Angular Momentum Concept 381
  • 10.1.1 Conservation of Angular Momentum for a Closed System 382
  • 10.1.2 Conservation of Angular Momentum for an Open System 388
  • 10.2 Turbomachines 392
  • 10.2.1 Theoretical Framework 392
  • 10.3 Energy-Absorbing Turbomachines 398
  • 10.3.1 Dimensional Analysis 403
  • 10.3.2 Scaling Properties, Specific Speed 403
  • 10.3.3 Pump Selection and Performance Considerations 407
  • 10.4 Energy-Producing Turbomachines 411
  • 10.4.1 Impulse Turbines 411
  • 10.4.2 Reaction Turbines 416
  • 10.5 Simple Propeller and Windmill Theory 418
  • 11 Compressible Flow 429
  • 11.1 Sonic Speed 429
  • 11.2 Isentropic Flow 432
  • 11.2.1 Flow in a Channel with Variable Area 435
  • 11.2.2 Mass Flow Rate Through a Channel 437
  • 11.3 Supersonic Flow--Related Phenomena 441
  • 11.3.1 Normal Shocks 442
  • 11.3.2 Oblique Shocks 447
  • 11.3.3 Prandtl-Meyer Expansion 451
  • 11.4 Flow in a Converging-Diverging Nozzle 454
  • 11.5 Flow with Friction 457
  • 11.5.1 Effect of Friction on Flow Properties 457
  • 11.5.2 Fanno Flow Line 460
  • 11.6 Flow with Heat Transfer 466
  • 11.6.1 Effect of Heat Transfer on Flow Properties 466
  • 11.6.2 Rayleigh Flow Line 468
  • 12 Experimental Fluid Dynamics 476
  • 12.1.1 Design of Experiments 476
  • 12.1.2 Data Acquisition 477
  • 12.1.3 Instrumentation Fundamentals 477
  • 12.1.4 Analysis of Experimental Data 478
  • 12.2 Measurement of Fluid Properties 484
  • 12.2.1 Volume, Mass, Density 484
  • 12.2.2 Viscosity 484
  • 12.3 Measurement of General Flow Characteristics 487
  • 12.3.1 Flow Visualization 487
  • 12.3.2 Velocity 491
  • 12.3.3 Pressure 494
  • 12.4 Standard Flow Rate Measuring Devices 495
  • 12.4.1 Pitot-Type Flow Meters 495
  • 12.4.2 Flow-Obstruction--Based Flow Meters 496
  • 12.4.3 Positive Displacement Flow Meters 498
  • 12.4.4 Other Flow Meters 499
  • 13 Fundamentals of Computational Fluid Dynamics 502
  • 13.1 Algebraic Equations 504
  • 13.1.1 Root of Equations 504
  • 13.1.2 Numerical Integration 507
  • 13.2 Ordinary Differential Equations 509
  • 13.2.1 Integration Schemes for ODEs 511
  • 13.3 Partial Differential Equations 514
  • 13.3.1 Discretization Methods 515
  • 13.3.2 Finite Difference Method 516
  • 13.4 Inviscid Flow 516
  • 13.4.1 Finite Difference Solution of [Delta superscript 2 psi] = 0 517
  • 13.5 Viscous Flow 519
  • 13.5.1 Boundary layer 519
  • A Fluid Properties 524
  • B Compressible Flow Tables 526
  • C Differential Form of the Governing Equations 538
  • D Computer Programs 540
  • D.1 Numerical Solution of Algebraic Equations 540
  • D.1.1 Calculation of Friction Factor f: Bisection Method 540
  • D.1.2 Calculation of Friction Factor f: Newton-Raphson Method 540
  • D.2 Numerical Integration 541
  • D.2.1 Trapezoidal Integration 541
  • D.2.2 Simpson's Integration 542
  • D.3 Numerical Integration of ODEs 543
  • D.3.1 Euler's Methods 543
  • D.3.2 Boundary-Layer Similarity Solution 544
  • D.4 Numericalp Integration of PDEs 546
  • D.4.1 Inviscid Flow: Solution of [Delta superscript 2 psi] = 0 546
  • D.4.2 Boundary-Layer Flow 550
  • E Basic Mathematics of Fluid Dynamics 556
  • E.1 Scalars 556
  • E.2 Vectors and Vector Algebra 556
  • E.2.1 Coordinate Systems 557
  • E.2.2 Vector Multiplication by a Scalar 558
  • E.2.3 Scalar, Vector-Vector Operations 559
  • E.2.4 Vector, Vector-Vector Operations 560
  • E.3 Elementary Calculus 560
  • E.4 Vector Differential Calculus 563
  • E.5 Lines, Surfaces, Volumes 564
  • E.5.1 Gauss Divergence Theorem 566
  • E.5.2 Stokes's Theorem 566
  • E.6 Tensors and Tensor Algebra 567.
Description
xii, 573 p. : ill. ; 27 cm.
Notes
Includes bibliographical references and index.
Technical Details
  • Access in Virgo Classic
  • Staff View

    LEADER 09505nam a2200301Ia 4500
    001 u3708015
    003 SIRSI
    005 20010411092142.0
    008 010207s2001 njua b 001 0 eng d
    010
      
      
    a| 00007450
    015
      
      
    a| GB99-Z9859
    020
      
      
    a| 013801762X
    035
      
      
    a| (Sirsi) i013801762X
    035
      
      
    a| (OCoLC)45864997
    040
      
      
    a| TEF c| TEF d| UKM d| MvI
    082
    0
    4
    a| 620.106 2| 21
    090
      
      
    a| QA901 b| .A44 2001
    100
    1
      
    a| Alexandrou, Andreas N.
    245
    1
    0
    a| Principles of fluid mechanics / c| Andreas N. Alexandrou.
    260
      
      
    a| Upper Saddle River : b| Prentice Hall, c| c2001.
    300
      
      
    a| xii, 573 p. : b| ill. ; c| 27 cm.
    504
      
      
    a| Includes bibliographical references and index.
    505
    0
    0
    g| 1.2 t| Fluid Dynamics and Engineering Analysis and Design g| 3 -- g| 1.2.1 t| Solution Methods g| 4 -- g| 1.3 t| Control Volume Analysis: Open System vs. Closed System g| 7 -- g| 1.4 t| Continuum Assumption, Differential Analysis g| 8 -- g| 1.5 t| Fluid Properties g| 11 -- g| 1.6 t| Dimensions and Systems of Units g| 23 -- g| 2 t| Conservation Laws for Closed Systems g| 29 -- g| 2.1 t| General Conservation Law for a Closed System g| 29 -- g| 2.2 t| Conservation of Mass g| 31 -- g| 2.3 t| Conservation of Linear Momentum g| 31 -- g| 2.3.1 t| Hydrostatics g| 39 -- g| 2.3.2 t| Conservation of Momentum for a Non-Inertial Coordinate System g| 45 -- g| 2.4 t| Conservation of Energy g| 46 -- g| 2.5 t| Second Law of Thermodynamics g| 52 -- g| 2.6 t| Review of Basic Thermodynamic Principles g| 54 -- g| 2.6.1 t| Dynamics of Ideal Gases g| 55 -- g| 2.7 t| Hydrostatic Effects on Submerged Bodies g| 63 -- g| 3 t| Conservation Laws for Open Systems g| 91 -- g| 3.1 t| Reynolds Transport Theorem g| 91 -- g| 3.2 t| General Conservation Law for an Open System g| 94 -- g| 3.3 t| Conservation of Mass g| 95 -- g| 3.4 t| Conservation of Linear Momentum g| 104 -- g| 3.4.1 t| Conservation of Linear Momentum for a Non-Inertial Coordinate System g| 108 -- g| 3.5 t| Conservation of Energy g| 112 -- g| 3.5.1 t| Energy Equation Along a Streamline g| 117 -- g| 3.6 t| Second Law of Thermodynamics g| 123 -- g| 4 t| Differential View of Fluid Motion: Fluid Kinematics and Deformation g| 139 -- g| 4.1 t| Differential View g| 139 -- g| 4.2 t| Position Vector of Fluid Particles g| 140 -- g| 4.3 t| Velocity and Acceleration Fields g| 141 -- g| 4.4 t| Lagrangian and Eulerian Perspectives g| 146 -- g| 4.5 t| Visual Kinematic Concepts g| 150 -- g| 4.5.1 t| Streamlines, Streamfunction g| 150 -- g| 4.5.2 t| Velocity Potential g| 154 -- g| 4.5.3 t| Pathlines, Streaklines g| 157 -- g| 4.6 t| Deformation of Fluid Elements: Translation, Rotation, Strain g| 161 -- g| 5 t| Differential Form of the Conservation Laws g| 175 -- g| 5.1 t| Differential View of the Dynamics of Flow: Internal State of Stress g| 175 -- g| 5.1.1 t| Body Forces on a Differential Control Volume g| 177 -- g| 5.1.2 t| Force on an Arbitrary Fluid Surface g| 178 -- g| 5.2 t| Conservation Laws g| 179 -- g| 5.2.1 t| Conservation of Mass g| 180 -- g| 5.2.2 t| Conservation of Linear Momentum g| 184 -- g| 5.2.3 t| Differential View of Fluid Statics g| 186 -- g| 5.2.4 t| Conservation of Mechanical Energy g| 191 -- g| 5.3 t| Constitutive Relations g| 192 -- g| 5.4 t| Flow Boundary Conditions g| 197 -- g| 5.4.1 t| No-Slip Boundary Condition g| 197 -- g| 5.4.2 t| Applied Surface Forces g| 199 -- g| 5.4.3 t| Surface Tension Forces g| 202 -- g| 5.4.4 t| Free Surface Boundary Conditions g| 202 -- g| 5.5 t| Navier-Stokes Equations g| 203 -- g| 5.6 t| Non-Isothermal Flows g| 206 -- g| 5.6.1 t| Conservation of Total Energy g| 206 -- g| 5.6.2 t| Conservation of Thermal Energy g| 207 -- g| 5.6.3 t| Constitutive Description of Heat Transfer g| 207 -- g| 5.6.4 t| Thermal Boundary Conditions g| 208 -- g| 6 t| Dimensional Analysis of Fluid Systems g| 214 -- g| 6.1 t| Functional Relations using Dimensional Analysis g| 214 -- g| 6.1.1 t| Buckingham-[Pi] Theorem g| 216 -- g| 6.2 t| Scaling and Order-of-Magnitude Analysis g| 221 -- g| 6.2.1 t| Significance of Dimensionless Groups g| 224 -- g| 6.3 t| Similitude, Design of Experiments g| 226 -- g| 6.3.1 t| Incomplete Similarity g| 230 -- g| 7 t| Exact Analytic Solutions g| 237 -- g| 7.1 t| Mathematical Modeling g| 237 -- g| 7.2 t| Poiseuille Flow: Fully Developed Channel Flow g| 237 -- g| 7.3 t| Poiseuille Flow: Fully Developed Pipe Flow g| 242 -- g| 7.4 t| Gravity Flow: Flow Down an Inclined Plane g| 245 -- g| 7.5 t| Film Drawing g| 249 -- g| 7.6 t| Fully Developed Non-Newtonian Channel Flow g| 252 -- g| 7.7 t| Transient Flow: Impulsively Started Flow g| 257 -- g| 7.8 t| Non-Isothermal Poiseuille Flow g| 260 -- g| 8 t| Combined Analytic and Experimental Solutions g| 266 -- g| 8.1 t| Boundary Layer Concept g| 266 -- g| 8.1.1 t| Boundary Layer Theory g| 267 -- g| 8.1.2 t| Approximate Momentum Integral Theory g| 270 -- g| 8.2 t| Laminar Boundary Layer Flow g| 273 -- g| 8.2.1 t| "Exact" Laminar Similarity Solutions g| 273 -- g| 8.2.2 t| Approximate Laminar Boundary Layer Flow g| 281 -- g| 8.3 t| Turbulent Boundary Layer Flow g| 287 -- g| 8.3.1 t| Approximate Turbulent Boundary Layer Flow g| 290 -- g| 8.4 t| Dynamics of External Flows g| 295 -- g| 8.4.1 t| Flow Separations g| 295 -- g| 8.4.2 t| Wake Dynamics g| 297 -- g| 8.4.3 t| Drag and Lift Forces g| 298 -- g| 8.4.4 t| Flow Past a Circular Cylinder g| 299 -- g| 8.4.5 t| Flow Past Bodies with Arbitrary Shapes g| 303 -- g| 8.4.6 t| Fundamentals of Aerodynamic Applications g| 308 -- g| 8.5 t| Internal Flows g| 315 -- g| 8.5.1 t| Energy Considerations in Pipe Flow g| 315 -- g| 8.5.2 t| Major Losses g| 317 -- g| 8.5.3 t| Minor Losses g| 323 -- g| 8.5.4 t| Solution Procedure for Single-Pipe Problems g| 329 -- g| 8.5.5 t| Flow in Piping Networks g| 334 -- g| 9 t| Ideal Inviscid Flow g| 344 -- g| 9.1 t| Inviscid Theory: Euler Equations g| 344 -- g| 9.1.1 t| Euler Equations in Streamline Coordinates g| 346 -- g| 9.1.2 t| Bernoulli Equation g| 348 -- g| 9.2 t| Exact Solutions for Irrotational Inviscid Flows g| 354 -- g| 9.2.1 t| Elementary Flows g| 355 -- g| 9.2.2 t| Superposition of Elementary Flows g| 363 -- g| 10 t| Dynamics of Rotating Fluids: Turbomachinery g| 381 -- g| 10.1 t| Conservation of Angular Momentum Concept g| 381 -- g| 10.1.1 t| Conservation of Angular Momentum for a Closed System g| 382 -- g| 10.1.2 t| Conservation of Angular Momentum for an Open System g| 388 -- g| 10.2 t| Turbomachines g| 392 -- g| 10.2.1 t| Theoretical Framework g| 392 -- g| 10.3 t| Energy-Absorbing Turbomachines g| 398 -- g| 10.3.1 t| Dimensional Analysis g| 403 -- g| 10.3.2 t| Scaling Properties, Specific Speed g| 403 -- g| 10.3.3 t| Pump Selection and Performance Considerations g| 407 -- g| 10.4 t| Energy-Producing Turbomachines g| 411 -- g| 10.4.1 t| Impulse Turbines g| 411 -- g| 10.4.2 t| Reaction Turbines g| 416 -- g| 10.5 t| Simple Propeller and Windmill Theory g| 418 -- g| 11 t| Compressible Flow g| 429 -- g| 11.1 t| Sonic Speed g| 429 -- g| 11.2 t| Isentropic Flow g| 432 -- g| 11.2.1 t| Flow in a Channel with Variable Area g| 435 -- g| 11.2.2 t| Mass Flow Rate Through a Channel g| 437 -- g| 11.3 t| Supersonic Flow--Related Phenomena g| 441 -- g| 11.3.1 t| Normal Shocks g| 442 -- g| 11.3.2 t| Oblique Shocks g| 447 -- g| 11.3.3 t| Prandtl-Meyer Expansion g| 451 -- g| 11.4 t| Flow in a Converging-Diverging Nozzle g| 454 -- g| 11.5 t| Flow with Friction g| 457 -- g| 11.5.1 t| Effect of Friction on Flow Properties g| 457 -- g| 11.5.2 t| Fanno Flow Line g| 460 -- g| 11.6 t| Flow with Heat Transfer g| 466 -- g| 11.6.1 t| Effect of Heat Transfer on Flow Properties g| 466 -- g| 11.6.2 t| Rayleigh Flow Line g| 468 -- g| 12 t| Experimental Fluid Dynamics g| 476 -- g| 12.1.1 t| Design of Experiments g| 476 -- g| 12.1.2 t| Data Acquisition g| 477 -- g| 12.1.3 t| Instrumentation Fundamentals g| 477 -- g| 12.1.4 t| Analysis of Experimental Data g| 478 -- g| 12.2 t| Measurement of Fluid Properties g| 484 -- g| 12.2.1 t| Volume, Mass, Density g| 484 -- g| 12.2.2 t| Viscosity g| 484 -- g| 12.3 t| Measurement of General Flow Characteristics g| 487 -- g| 12.3.1 t| Flow Visualization g| 487 -- g| 12.3.2 t| Velocity g| 491 -- g| 12.3.3 t| Pressure g| 494 -- g| 12.4 t| Standard Flow Rate Measuring Devices g| 495 -- g| 12.4.1 t| Pitot-Type Flow Meters g| 495 -- g| 12.4.2 t| Flow-Obstruction--Based Flow Meters g| 496 -- g| 12.4.3 t| Positive Displacement Flow Meters g| 498 -- g| 12.4.4 t| Other Flow Meters g| 499 -- g| 13 t| Fundamentals of Computational Fluid Dynamics g| 502 -- g| 13.1 t| Algebraic Equations g| 504 -- g| 13.1.1 t| Root of Equations g| 504 -- g| 13.1.2 t| Numerical Integration g| 507 -- g| 13.2 t| Ordinary Differential Equations g| 509 -- g| 13.2.1 t| Integration Schemes for ODEs g| 511 -- g| 13.3 t| Partial Differential Equations g| 514 -- g| 13.3.1 t| Discretization Methods g| 515 -- g| 13.3.2 t| Finite Difference Method g| 516 -- g| 13.4 t| Inviscid Flow g| 516 -- g| 13.4.1 t| Finite Difference Solution of [Delta superscript 2 psi] = 0 g| 517 -- g| 13.5 t| Viscous Flow g| 519 -- g| 13.5.1 t| Boundary layer g| 519 -- g| A t| Fluid Properties g| 524 -- g| B t| Compressible Flow Tables g| 526 -- g| C t| Differential Form of the Governing Equations g| 538 -- g| D t| Computer Programs g| 540 -- g| D.1 t| Numerical Solution of Algebraic Equations g| 540 -- g| D.1.1 t| Calculation of Friction Factor f: Bisection Method g| 540 -- g| D.1.2 t| Calculation of Friction Factor f: Newton-Raphson Method g| 540 -- g| D.2 t| Numerical Integration g| 541 -- g| D.2.1 t| Trapezoidal Integration g| 541 -- g| D.2.2 t| Simpson's Integration g| 542 -- g| D.3 t| Numerical Integration of ODEs g| 543 -- g| D.3.1 t| Euler's Methods g| 543 -- g| D.3.2 t| Boundary-Layer Similarity Solution g| 544 -- g| D.4 t| Numericalp Integration of PDEs g| 546 -- g| D.4.1 t| Inviscid Flow: Solution of [Delta superscript 2 psi] = 0 g| 546 -- g| D.4.2 t| Boundary-Layer Flow g| 550 -- g| E t| Basic Mathematics of Fluid Dynamics g| 556 -- g| E.1 t| Scalars g| 556 -- g| E.2 t| Vectors and Vector Algebra g| 556 -- g| E.2.1 t| Coordinate Systems g| 557 -- g| E.2.2 t| Vector Multiplication by a Scalar g| 558 -- g| E.2.3 t| Scalar, Vector-Vector Operations g| 559 -- g| E.2.4 t| Vector, Vector-Vector Operations g| 560 -- g| E.3 t| Elementary Calculus g| 560 -- g| E.4 t| Vector Differential Calculus g| 563 -- g| E.5 t| Lines, Surfaces, Volumes g| 564 -- g| E.5.1 t| Gauss Divergence Theorem g| 566 -- g| E.5.2 t| Stokes's Theorem g| 566 -- g| E.6 t| Tensors and Tensor Algebra g| 567.
    596
      
      
    a| 5
    650
      
    0
    a| Fluid mechanics.
    994
      
      
    a| Z0 b| VA@
    999
      
      
    a| QA901 .A44 2001 w| LC i| X004472196 l| STACKS m| SCI-ENG t| BOOK
▾See more
▴See less

Availability

Google Preview

Google Books Preview
Library Location Map Availability Call Number
Brown Science and Engineering Stacks N/A Available