Item Details

Applied Quantum Mechanics

Walter A. Harrison
Format
Book
Published
Singapore ; River Edge, NJ : World Scientific, c2000.
Language
English
ISBN
9810243758, 9810243944 (SC)
Contents
  • An absolute truth
  • Difficult to believe
  • 1.2 Schroedinger's Equation 3
  • Packets
  • Average position
  • Matching velocities
  • Operators
  • Inventing the equation
  • 1.3 Light waves 9
  • Vector potential
  • Maxwell's Equations
  • 1.4 New Meaning for Potentials 10
  • Aharanov and Bohm
  • 1.5 Measurement 12
  • Average values
  • Consistent scenarios
  • 1.6 Eigenstates 13
  • Eigenvalues
  • Normalization
  • Energy levels
  • 1.7 Boundary conditions 16
  • Vanishing and periodic
  • 1.8 Sound Waves 17
  • Boundary conditions
  • Modes
  • Speed
  • 2. Simple Cases
  • 2.1 Free Electrons in One Dimension 19
  • Effect of boundary conditions
  • [pi]-states in benzene
  • 2.2 Free Electron in Three Dimensions 21
  • Product wavefunctions
  • One-electron approximation
  • Fermi surfaces
  • Density of states
  • Surface energies
  • 2.3 Quantum Slabs, Wires, and Dots 24
  • Giant Magnetoresistance
  • Quantized conductance
  • 2.4 Circularly and Spherically-Symmetric Systems 31
  • Cylindrical and spherical systems
  • Spherical harmonics
  • Quantum wells
  • Shallow wells
  • 2.5 Harmonic Oscillator 39
  • Harmonic oscillator wavefunctions
  • Ladder of energies
  • Oscillators in three dimensions
  • 3. Hamiltonian Mechanics
  • 3.1 Lagrangian 45
  • Lagrange's Equations
  • Canonical momentum
  • 3.2 Hamilton's Equations 46
  • Equations
  • Angular coordinates and angular momentum
  • Restating the premise of quantum theory
  • 3.3 Including the Vector Potential 48
  • Fields from the vector potential
  • Field energies
  • Forces on charged particles
  • Schroedinger Equation with fields
  • II. Electronic Structure
  • 4. Atoms
  • 4.1 Hydrogen Atom 53
  • Ground state
  • Excited states
  • 4.2 Many-Electron Atoms 56
  • Two-electron wavefunction
  • Variational calculations
  • One-electron
  • Hartree and Hartree-Fock Approximations
  • A table of atomic energy levels
  • 4.3 Pseudopotentials 62
  • Periodic Table of the Elements
  • Pseudowavefunctions
  • Weak pseudopotentials
  • 4.4 Nuclear Structure 65
  • Liquid-drop model
  • Shell model
  • Structure of the nucleus
  • Nuclear moments
  • Beta and gamma rays
  • Fission
  • Standard Model
  • 5. Molecules
  • 5.1. Li[subscript 2] Molecule 69
  • LCAO or tight-binding states
  • Bonding and antibonding states
  • Dirac notation
  • 5.2 Variational Method 73
  • Lowest-energy state
  • Lagrange multipliers
  • Variational equations
  • 5.3 Molecular Orbitals 68
  • Polar bonds
  • Nonorthogonality and the overlap repulsion
  • 5.4 Perturbation Theory 79
  • First and second order
  • Repulsion of levels
  • 5.5 N[subscript 2], CO, and CO[subscript 2] 81
  • Cohesion, [pi]-bonds
  • Sp-hybrids and [sigma]-bonds
  • Multicenter bonds
  • 6. Crystals
  • 6.1 Linear Chain 88
  • S-bands
  • Brillouin Zone
  • Benzene [pi]-bands
  • Finite chain
  • 6.2 Free-Electron Bands and Tight-Binding Parameters 92
  • Matching the limits
  • Universal coupling parameters
  • P-state coupling
  • 6.3 Metallic, Ionic, and Covalent Solids 98
  • Periodic Table and solids
  • Metals and nonmetals
  • Covalent semiconductors
  • Ionic insulators
  • D- and f-shell metals and compounds
  • III. Time Dependence
  • 7. Transitions
  • 7.1 A Pair of Coupled States 105
  • Need for a continuum
  • 7.2 Fermi's Golden Rule 106
  • Derivation and interpretation
  • 7.3 Scattering in One and Three Dimensions 109
  • Scattering by impurities
  • 8. Tunneling
  • 8.1 Transmission in a 1-D Chain 112
  • Exact result
  • Scattering and the high-transmission limit
  • Tunneling and the low-transmission limit
  • 8.2 More General Barriers 115
  • Three dimensions
  • Working through the barrier
  • Free-electron formula
  • Continuity equation and current operator
  • General matching conditions
  • 8.3 Tunneling Systems 120
  • Tunneling as a quantum transition
  • Metal-oxide-metal systems --g Scanning tunneling microscope
  • 8.4 Tunneling Resonance 121
  • Decay of states
  • [alpha]-ray emission by nuclei
  • Scattering resonances
  • Resonant states and Coulomb blockades
  • 9. Transition Rates
  • 9.1 Second-Order Coupling 125
  • First-order states and second-order matrix elements
  • Resonant tunneling
  • Tunneling through impurity states
  • 9.2 Carrier Emission and Capture 128
  • Emission rate from the Golden Rule
  • Capture from detailed balance
  • Sequential tunneling compared with resonant tunneling
  • 9.3 Time-Dependent Perturbations 128
  • Fourier expansion of time dependence
  • Energy loss and gain
  • 9.4 Optical Transitions 130
  • Interaction with light
  • Selection rules
  • Photon spin
  • Ionization of an atom
  • 9.5 Beta-Ray Emission from Nuclei 135
  • Neutrino
  • Fermi's theory
  • Weak interactions
  • IV. Statistical Physics
  • 10. Statistical Mechanics
  • 10.1 Distribution Functions 140
  • Excitations of a harmonic oscillator
  • Distribution of excitations and average excitation
  • 10.2 Phonon and Photon Statistics 145
  • Thermal distribution
  • Lattice specific heat
  • Planck distribution
  • 10.3 Bosons 147
  • Chemical potential
  • Bose-Einstein condensation
  • 10.4 Symmetry Under Interchange 149
  • Two-particle wavefunction
  • Limitation on O[superscript 16 subscript 2] tumbling
  • Ortho- and parahydrogen
  • 10.5 Fermions 153
  • Antisymmetry
  • Pauli Principle
  • Fermi-Dirac distribution
  • Classical limit
  • 11. Transport Theory
  • 11.1 Time-Dependent Distributions 158
  • Rate equations
  • Detailed balance
  • Steady state
  • 11.2 Boltzmann Equation 159
  • Linearization
  • Relaxation-time approximation
  • 11.3 Conductivity, etc. 162
  • Finding the distribution function
  • Evaluating the current
  • General transport properties
  • 12. Noise
  • 12.1 Classical Noise 164
  • Thermal or Johnson noise
  • Fluctuations and dissipation
  • 12.2 Quantum Noise and van-der-Waals Interaction 165
  • Coupled dipole oscillators
  • Correlated zero-point motion
  • Many-body interaction
  • 12.3 Shot Noise 167
  • Shot noise in a classical gas
  • Quantum suppression
  • Enhancement
  • Concentration
  • 12.4 Other Sources 170
  • Partition noise
  • 1/f noise
  • V. Electrons and Phonons
  • 13. Energy Bands
  • 13.1 Empty-Core Pseudopotential 174
  • Form factors
  • Structure factors
  • 13.2 A Band Calculation 178
  • Lattice wavenumbers
  • Brillouin Zones
  • Diagonalizing the Hamiltonian matrix
  • Free-electron bands
  • 13.3 Diffraction 184
  • Finite pseudopotentials
  • 13.4 Scattering by Impurities 185
  • Total rates
  • Momentum relaxation time
  • 13.5 Semiconductor Energy Bands 186
  • From pseudopotentials
  • A tight-binding representation
  • 14. Electron Dynamics
  • 14.1 Dynamics of Packets 189
  • Hamilton's Equations
  • Motion in a magnetic field
  • Level crossing
  • 14.2 Effective Masses and Donor States 192
  • Effective-mass equations
  • Anisotropic masses
  • A hydrogenic donor state
  • 14.3 Dynamics of Holes 194
  • Behavior as a positive-charge
  • Positive-mass particle
  • Binding electrons to form excitons
  • Acceleration by fields and by elastic distortions
  • 15. Lattice Vibrations
  • 15.1 Spectrum 197
  • One-dimensional chain
  • Three-dimensional crystal
  • 15.2 Classical-Vibration Hamiltonian 201
  • Normal coordinates
  • Hamiltonian
  • 15.3 Electron-Phonon Interaction 203
  • Electron-phonon matrix elements
  • Debye-Waller factor
  • VI. Quantum Optics
  • 16. Operators
  • 16.1 Annihilation and Creation Operators for Electrons 207
  • Many-particle states
  • Commutation relations
  • Operators for kinetic and potential energies
  • Electron-electron interactions
  • 16.2 Stepping Operators 212
  • Guessing a form for the harmonic oscillator
  • Commutation relations --t Number operator
  • Excitation of the oscillator
  • 16.3 Angular Momentum 216
  • Raising and lowering operators
  • 17. Phonons
  • 17.1 Annihilation and Creation Operators for Phonons 220
  • Electron-phonon interaction
  • 17.2 Phonon Emission and Absorption 223
  • Using the Golden Rule
  • Eliminating operators
  • Absorption
  • Spontaneous emission
  • Stimulated emission
  • 17.3 Polaron Self-Energy 225
  • Polar coupling
  • Polaron energy
  • 17.4 Electron-Electron and Nucleon-Nucleon Interactions 228
  • Interactions for superconductivity
  • Semiconductors and exchange of virtual phonons
  • Exchange of pions and the interaction between nucleons
  • 18. Photons
  • 18.1 Photons and the Electron-Photon Interaction 232
  • Conjugate momentum
  • Photon Hamiltonian
  • Annihilation and creation operators
  • Electron-photon interaction
  • 18.2 Excitation of Atoms 235
  • Matrix element
  • Transition rates
  • Equilibrium
  • Saturating a transition
  • 18.3 Three-Level Laser 239
  • Levels in helium
  • Pumping
  • Laser action
  • 18.4 Interband Transitions 241
  • Optical matrix elements
  • Vertical transitions
  • Light-emitting diodes
  • Solid-state lasers
  • Strain layers
  • 19. Coherent States
  • 19.1 Coherence in a Harmonic Oscillator 247
  • Mixed excitation levels
  • Coherent phases
  • 19.2 A Driven Classical Oscillator 249
  • Polarizability
  • Real and imaginary parts
  • 19.3 A Driven Quantum Oscillator 251
  • Dressed states
  • Energy loss
  • 19.4 Coherent Light 254
  • Coherence in a single mode
  • Laser radiation
  • -- 19.5 Electromagnetically-Induced Transparency 256
  • Degenerate case
  • Coupling and probe fields
  • Nondegenerate case
  • Dynamic states and the Rabi frequency
  • VII. Many-Body Effects
  • 20. Coulomb Effects
  • 20.1 Coulomb Shifts 260
  • Second ionization potentials
  • Electron affinities
  • Madelung contributions
  • Band-gap enhancements
  • 20.2 Screening 263
  • Fermi-Thomas approximation
  • Dielectric function
  • Quantum screening
  • Plasma oscillations
  • Speed of sound in metals
  • 21. Cooperative Phenomena
  • 21.1 Localization and Symmetry Breaking 270
  • Coulomb U and spin segregation
  • Unrestricted Hartree-Fock
  • First-order phase transitions
  • 21.2 Hubbard Hamiltonian 275
  • Half-filled band
  • Antiferromagnetic insulator
  • Spin-density waves
  • Second-order phase transitions
  • Higher dimensions
  • Special points
  • 21.3 Peierls Distortions 281
  • Pairing of atoms
  • Charge-density wave
  • Off-diagonal long-range order
  • 21.4 Superconductivity 282
  • Cooper pairs
  • BCS ground state
  • Energy-gap parameter
  • Persistent current
  • 22. Magnetism
  • 22.1 Free Electrons in a Magnetic Field 287
  • Landau gauge
  • Landau levels
  • De Haas-van Alphen effect
  • Quantum Hall Effect
  • 22.2 Magnetism of Atoms 292
  • Zeeman splitting
  • Bohr magneton and spin
  • Spin resonance
  • Nuclear Magnetic Resonance (NMR)
  • 22.3 Magnetic Susceptibility 295
  • Pauli paramagnetism of free electrons
  • Comparison with the diamagnetic term
  • Diamagnetism in atoms and molecules
  • Molecular paramagnetism
  • 22.4 Ferromagnetism 298
  • Criterion for instability of a free-electron gas
  • Wigner crystal
  • Atomic view of magnetic properties
  • 22.5 Spin-Orbit Coupling 301
  • Spin-orbit Hamiltonian
  • Total angular momentum
  • Fine structure for atoms
  • Spin-split bands
  • Anticrossings
  • 23. Shake-Off Excitations
  • 23.1 Adiabatic and Sudden Approximations 306
  • Time-dependent boundaries
  • Transition probabilities
  • A criterion for fast or slow
  • 23.2 Vibrational Excitations 309
  • A model system
  • A criterion
  • Transition and tunneling times
  • Franck-Condon Principle
  • Polaron tunneling
  • Phonon-assisted transitions
  • Mossbauer Effect
  • 23.3 Electronic and Auger processes 315
  • Beta-decay
  • Donor states
  • Atoms
  • Shake-off in metals
  • 23.4 Inelastic Processes 316
  • Loss in an intermediate state
  • Interference
  • Random phases or collapse of wavefunctions
  • Cloud-chamber tracks
  • Qubits and quantum computing
  • Quantum cryptography.
Description
xvi, 353 p. : ill. ; 23 cm.
Notes
Includes bibliographical references (p. 343-344) and index.
Technical Details
  • Access in Virgo Classic

  • LEADER 13419pam a22003374a 4500
    001 u3704687
    003 SIRSI
    005 20001019114808.0
    008 000622s2000 si a b 001 0 eng
    010
      
      
    a| 00043505
    020
      
      
    a| 9810243758
    020
      
      
    a| 9810243944 (SC)
    035
      
      
    a| (Sirsi) i9810243758
    035
      
      
    a| (OCoLC)44509175
    040
      
      
    a| DLC c| DLC d| NhCcYBP d| MvI
    042
      
      
    a| pcc
    050
    0
    0
    a| QC174.12 b| .H377 2000
    082
    0
    0
    a| 530.12 2| 21
    090
      
      
    a| PHYS/QC174.12 b| .H377 2000
    100
    1
      
    a| Harrison, Walter A. q| (Walter Ashley), d| 1930-
    245
    1
    0
    a| Applied quantum mechanics / c| Walter A. Harrison.
    260
      
      
    a| Singapore ; a| River Edge, NJ : b| World Scientific, c| c2000.
    300
      
      
    a| xvi, 353 p. : b| ill. ; c| 23 cm.
    504
      
      
    a| Includes bibliographical references (p. 343-344) and index.
    505
    0
    0
    t| An absolute truth -- t| Difficult to believe -- g| 1.2 t| Schroedinger's Equation g| 3 -- t| Packets -- t| Average position -- t| Matching velocities -- t| Operators -- t| Inventing the equation -- g| 1.3 t| Light waves g| 9 -- t| Vector potential -- t| Maxwell's Equations -- g| 1.4 t| New Meaning for Potentials g| 10 -- t| Aharanov and Bohm -- g| 1.5 t| Measurement g| 12 -- t| Average values -- t| Consistent scenarios -- g| 1.6 t| Eigenstates g| 13 -- t| Eigenvalues -- t| Normalization -- t| Energy levels -- g| 1.7 t| Boundary conditions g| 16 -- t| Vanishing and periodic -- g| 1.8 t| Sound Waves g| 17 -- t| Boundary conditions -- t| Modes -- t| Speed -- g| 2. t| Simple Cases -- g| 2.1 t| Free Electrons in One Dimension g| 19 -- t| Effect of boundary conditions -- t| [pi]-states in benzene -- g| 2.2 t| Free Electron in Three Dimensions g| 21 -- t| Product wavefunctions -- t| One-electron approximation -- t| Fermi surfaces -- t| Density of states -- t| Surface energies -- g| 2.3 t| Quantum Slabs, Wires, and Dots g| 24 -- t| Giant Magnetoresistance -- t| Quantized conductance -- g| 2.4 t| Circularly and Spherically-Symmetric Systems g| 31 -- t| Cylindrical and spherical systems -- t| Spherical harmonics -- t| Quantum wells -- t| Shallow wells -- g| 2.5 t| Harmonic Oscillator g| 39 -- t| Harmonic oscillator wavefunctions -- t| Ladder of energies -- t| Oscillators in three dimensions -- g| 3. t| Hamiltonian Mechanics -- g| 3.1 t| Lagrangian g| 45 -- t| Lagrange's Equations -- t| Canonical momentum -- g| 3.2 t| Hamilton's Equations g| 46 -- t| Equations -- t| Angular coordinates and angular momentum -- t| Restating the premise of quantum theory -- g| 3.3 t| Including the Vector Potential g| 48 -- t| Fields from the vector potential -- t| Field energies -- t| Forces on charged particles -- t| Schroedinger Equation with fields -- g| II. t| Electronic Structure -- g| 4. t| Atoms -- g| 4.1 t| Hydrogen Atom g| 53 -- t| Ground state -- t| Excited states -- g| 4.2 t| Many-Electron Atoms g| 56 -- t| Two-electron wavefunction -- t| Variational calculations -- t| One-electron -- t| Hartree and Hartree-Fock Approximations -- t| A table of atomic energy levels -- g| 4.3 t| Pseudopotentials g| 62 -- t| Periodic Table of the Elements -- t| Pseudowavefunctions -- t| Weak pseudopotentials -- g| 4.4 t| Nuclear Structure g| 65 -- t| Liquid-drop model -- t| Shell model -- t| Structure of the nucleus -- t| Nuclear moments -- t| Beta and gamma rays -- t| Fission -- t| Standard Model -- g| 5. t| Molecules -- g| 5.1. t| Li[subscript 2] Molecule g| 69 -- t| LCAO or tight-binding states -- t| Bonding and antibonding states -- t| Dirac notation -- g| 5.2 t| Variational Method g| 73 -- t| Lowest-energy state -- t| Lagrange multipliers -- t| Variational equations -- g| 5.3 t| Molecular Orbitals g| 68 -- t| Polar bonds -- t| Nonorthogonality and the overlap repulsion -- g| 5.4 t| Perturbation Theory g| 79 -- t| First and second order -- t| Repulsion of levels -- g| 5.5 t| N[subscript 2], CO, and CO[subscript 2] g| 81 -- t| Cohesion, [pi]-bonds -- t| Sp-hybrids and [sigma]-bonds -- t| Multicenter bonds -- g| 6. t| Crystals -- g| 6.1 t| Linear Chain g| 88 -- t| S-bands -- t| Brillouin Zone -- t| Benzene [pi]-bands -- t| Finite chain -- g| 6.2 t| Free-Electron Bands and Tight-Binding Parameters g| 92 -- t| Matching the limits -- t| Universal coupling parameters -- t| P-state coupling -- g| 6.3 t| Metallic, Ionic, and Covalent Solids g| 98 -- t| Periodic Table and solids -- t| Metals and nonmetals -- t| Covalent semiconductors -- t| Ionic insulators -- t| D- and f-shell metals and compounds -- g| III. t| Time Dependence -- g| 7. t| Transitions -- g| 7.1 t| A Pair of Coupled States g| 105 -- t| Need for a continuum -- g| 7.2 t| Fermi's Golden Rule g| 106 -- t| Derivation and interpretation -- g| 7.3 t| Scattering in One and Three Dimensions g| 109 -- t| Scattering by impurities -- g| 8. t| Tunneling -- g| 8.1 t| Transmission in a 1-D Chain g| 112 -- t| Exact result -- t| Scattering and the high-transmission limit -- t| Tunneling and the low-transmission limit -- g| 8.2 t| More General Barriers g| 115 -- t| Three dimensions -- t| Working through the barrier -- t| Free-electron formula -- t| Continuity equation and current operator -- t| General matching conditions -- g| 8.3 t| Tunneling Systems g| 120 -- t| Tunneling as a quantum transition -- t| Metal-oxide-metal systems --g t| Scanning tunneling microscope -- g| 8.4 t| Tunneling Resonance g| 121 -- t| Decay of states -- t| [alpha]-ray emission by nuclei -- t| Scattering resonances -- t| Resonant states and Coulomb blockades -- g| 9. t| Transition Rates -- g| 9.1 t| Second-Order Coupling g| 125 -- t| First-order states and second-order matrix elements -- t| Resonant tunneling -- t| Tunneling through impurity states -- g| 9.2 t| Carrier Emission and Capture g| 128 -- t| Emission rate from the Golden Rule -- t| Capture from detailed balance -- t| Sequential tunneling compared with resonant tunneling -- g| 9.3 t| Time-Dependent Perturbations g| 128 -- t| Fourier expansion of time dependence -- t| Energy loss and gain -- g| 9.4 t| Optical Transitions g| 130 -- t| Interaction with light -- t| Selection rules -- t| Photon spin -- t| Ionization of an atom -- g| 9.5 t| Beta-Ray Emission from Nuclei g| 135 -- t| Neutrino -- t| Fermi's theory -- t| Weak interactions -- g| IV. t| Statistical Physics -- g| 10. t| Statistical Mechanics -- g| 10.1 t| Distribution Functions g| 140 -- t| Excitations of a harmonic oscillator -- t| Distribution of excitations and average excitation -- g| 10.2 t| Phonon and Photon Statistics g| 145 -- t| Thermal distribution -- t| Lattice specific heat -- t| Planck distribution -- g| 10.3 t| Bosons g| 147 -- t| Chemical potential -- t| Bose-Einstein condensation -- g| 10.4 t| Symmetry Under Interchange g| 149 -- t| Two-particle wavefunction -- t| Limitation on O[superscript 16 subscript 2] tumbling -- t| Ortho- and parahydrogen -- g| 10.5 t| Fermions g| 153 -- t| Antisymmetry -- t| Pauli Principle -- t| Fermi-Dirac distribution -- t| Classical limit -- g| 11. t| Transport Theory -- g| 11.1 t| Time-Dependent Distributions g| 158 -- t| Rate equations -- t| Detailed balance -- t| Steady state -- g| 11.2 t| Boltzmann Equation g| 159 -- t| Linearization -- t| Relaxation-time approximation -- g| 11.3 t| Conductivity, etc. g| 162 -- t| Finding the distribution function -- t| Evaluating the current -- t| General transport properties -- g| 12. t| Noise -- g| 12.1 t| Classical Noise g| 164 -- t| Thermal or Johnson noise -- t| Fluctuations and dissipation -- g| 12.2 t| Quantum Noise and van-der-Waals Interaction g| 165 -- t| Coupled dipole oscillators -- t| Correlated zero-point motion -- t| Many-body interaction -- g| 12.3 t| Shot Noise g| 167 -- t| Shot noise in a classical gas -- t| Quantum suppression -- t| Enhancement -- t| Concentration -- g| 12.4 t| Other Sources g| 170 -- t| Partition noise -- t| 1/f noise -- g| V. t| Electrons and Phonons -- g| 13. t| Energy Bands -- g| 13.1 t| Empty-Core Pseudopotential g| 174 -- t| Form factors -- t| Structure factors -- g| 13.2 t| A Band Calculation g| 178 -- t| Lattice wavenumbers -- t| Brillouin Zones -- t| Diagonalizing the Hamiltonian matrix -- t| Free-electron bands -- g| 13.3 t| Diffraction g| 184 -- t| Finite pseudopotentials -- t| Fermi surfaces -- g| 13.4 t| Scattering by Impurities g| 185 -- t| Total rates -- t| Momentum relaxation time -- g| 13.5 t| Semiconductor Energy Bands g| 186 -- t| From pseudopotentials -- t| A tight-binding representation -- g| 14. t| Electron Dynamics -- g| 14.1 t| Dynamics of Packets g| 189 -- t| Hamilton's Equations -- t| Motion in a magnetic field -- t| Level crossing -- g| 14.2 t| Effective Masses and Donor States g| 192 -- t| Effective-mass equations -- t| Anisotropic masses -- t| A hydrogenic donor state -- g| 14.3 t| Dynamics of Holes g| 194 -- t| Behavior as a positive-charge -- t| Positive-mass particle -- t| Binding electrons to form excitons -- t| Acceleration by fields and by elastic distortions -- g| 15. t| Lattice Vibrations -- g| 15.1 t| Spectrum g| 197 -- t| One-dimensional chain -- t| Three-dimensional crystal -- g| 15.2 t| Classical-Vibration Hamiltonian g| 201 -- t| Normal coordinates -- t| Canonical momentum -- t| Hamiltonian -- g| 15.3 t| Electron-Phonon Interaction g| 203 -- t| Structure factors -- t| Electron-phonon matrix elements -- t| Debye-Waller factor -- g| VI. t| Quantum Optics -- g| 16. t| Operators -- g| 16.1 t| Annihilation and Creation Operators for Electrons g| 207 -- t| Many-particle states -- t| Commutation relations -- t| Operators for kinetic and potential energies -- t| Electron-electron interactions -- g| 16.2 t| Stepping Operators g| 212 -- t| Guessing a form for the harmonic oscillator -- t| Commutation relations --t t| Number operator -- t| Normalization -- t| Excitation of the oscillator -- g| 16.3 t| Angular Momentum g| 216 -- t| Raising and lowering operators -- t| Commutation relations -- t| Selection rules -- g| 17. t| Phonons -- g| 17.1 t| Annihilation and Creation Operators for Phonons g| 220 -- t| Hamiltonian -- t| Commutation relations -- t| Electron-phonon interaction -- g| 17.2 t| Phonon Emission and Absorption g| 223 -- t| Using the Golden Rule -- t| Eliminating operators -- t| Absorption -- t| Spontaneous emission -- t| Stimulated emission -- g| 17.3 t| Polaron Self-Energy g| 225 -- t| Eliminating operators -- t| Polar coupling -- t| Polaron energy -- g| 17.4 t| Electron-Electron and Nucleon-Nucleon Interactions g| 228 -- t| Interactions for superconductivity -- t| Semiconductors and exchange of virtual phonons -- t| Exchange of pions and the interaction between nucleons -- g| 18. t| Photons -- g| 18.1 t| Photons and the Electron-Photon Interaction g| 232 -- t| Normal coordinates -- t| Conjugate momentum -- t| Photon Hamiltonian -- t| Annihilation and creation operators -- t| Commutation relations -- t| Electron-photon interaction -- g| 18.2 t| Excitation of Atoms g| 235 -- t| Matrix element -- t| Transition rates -- t| Equilibrium -- t| Saturating a transition -- g| 18.3 t| Three-Level Laser g| 239 -- t| Levels in helium -- t| Pumping -- t| Laser action -- g| 18.4 t| Interband Transitions g| 241 -- t| Optical matrix elements -- t| Vertical transitions -- t| Light-emitting diodes -- t| Solid-state lasers -- t| Strain layers -- g| 19. t| Coherent States -- g| 19.1 t| Coherence in a Harmonic Oscillator g| 247 -- t| Mixed excitation levels -- t| Coherent phases -- g| 19.2 t| A Driven Classical Oscillator g| 249 -- t| Polarizability -- t| Real and imaginary parts -- g| 19.3 t| A Driven Quantum Oscillator g| 251 -- t| Dressed states -- t| Polarizability -- t| Energy loss -- g| 19.4 t| Coherent Light g| 254 -- t| Coherence in a single mode -- t| Laser radiation --
    505
    8
    0
    g| 19.5 t| Electromagnetically-Induced Transparency g| 256 -- t| Degenerate case -- t| Coupling and probe fields -- t| Nondegenerate case -- t| Dynamic states and the Rabi frequency -- g| VII. t| Many-Body Effects -- g| 20. t| Coulomb Effects -- g| 20.1 t| Coulomb Shifts g| 260 -- t| Second ionization potentials -- t| Electron affinities -- t| Madelung contributions -- t| Band-gap enhancements -- g| 20.2 t| Screening g| 263 -- t| Fermi-Thomas approximation -- t| Dielectric function -- t| Quantum screening -- t| Plasma oscillations -- t| Speed of sound in metals -- g| 21. t| Cooperative Phenomena -- g| 21.1 t| Localization and Symmetry Breaking g| 270 -- t| Coulomb U and spin segregation -- t| Unrestricted Hartree-Fock -- t| First-order phase transitions -- g| 21.2 t| Hubbard Hamiltonian g| 275 -- t| Half-filled band -- t| Antiferromagnetic insulator -- t| Spin-density waves -- t| Second-order phase transitions -- t| Higher dimensions -- t| Special points -- g| 21.3 t| Peierls Distortions g| 281 -- t| Pairing of atoms -- t| Charge-density wave -- t| Off-diagonal long-range order -- g| 21.4 t| Superconductivity g| 282 -- t| Cooper pairs -- t| BCS ground state -- t| Energy-gap parameter -- t| Persistent current -- g| 22. t| Magnetism -- g| 22.1 t| Free Electrons in a Magnetic Field g| 287 -- t| Landau gauge -- t| Landau levels -- t| De Haas-van Alphen effect -- t| Quantum Hall Effect -- g| 22.2 t| Magnetism of Atoms g| 292 -- t| Hamiltonian -- t| Zeeman splitting -- t| Bohr magneton and spin -- t| Spin resonance -- t| Nuclear Magnetic Resonance (NMR) -- g| 22.3 t| Magnetic Susceptibility g| 295 -- t| Pauli paramagnetism of free electrons -- t| Comparison with the diamagnetic term -- t| Diamagnetism in atoms and molecules -- t| Molecular paramagnetism -- g| 22.4 t| Ferromagnetism g| 298 -- t| Criterion for instability of a free-electron gas -- t| Wigner crystal -- t| Atomic view of magnetic properties -- g| 22.5 t| Spin-Orbit Coupling g| 301 -- t| Spin-orbit Hamiltonian -- t| Total angular momentum -- t| Fine structure for atoms -- t| Spin-split bands -- t| Anticrossings -- g| 23. t| Shake-Off Excitations -- g| 23.1 t| Adiabatic and Sudden Approximations g| 306 -- t| Time-dependent boundaries -- t| Transition probabilities -- t| A criterion for fast or slow -- g| 23.2 t| Vibrational Excitations g| 309 -- t| A model system -- t| A criterion -- t| Transition and tunneling times -- t| Franck-Condon Principle -- t| Polaron tunneling -- t| Phonon-assisted transitions -- t| Mossbauer Effect -- g| 23.3 t| Electronic and Auger processes g| 315 -- t| Beta-decay -- t| Donor states -- t| Atoms -- t| Shake-off in metals -- g| 23.4 t| Inelastic Processes g| 316 -- t| Loss in an intermediate state -- t| Interference -- t| Random phases or collapse of wavefunctions -- t| Cloud-chamber tracks -- t| Qubits and quantum computing -- t| Quantum cryptography.
    596
      
      
    a| 9
    650
      
    0
    a| Quantum theory.
    999
      
      
    a| QC174.12 .H377 2000 w| LC i| X004474145 l| STACKS m| PHYSICS t| BOOK

Availability

Google Preview

Library Location Map Availability Call Number
Physics Stacks N/A Available