Item Details

Print View

Forensic Engineering Investigation

Randall K. Noon
Format
Book
Published
Boca Raton [Fla.] : CRC Press, c2001.
Language
English
ISBN
0849309115 (alk. paper)
Contents
  • 1.2 Investigation Pyramid 3
  • 1.3 Eyewitness Information 6
  • 1.4 Role in the Legal System 8
  • 1.5 Scientific Method 9
  • 1.6 Applying the Scientific Method to Forensic Engineering 10
  • 1.7 Scientific Method and the Legal System 12
  • 1.8 A Priori Biases 13
  • 1.9 Engineer as Expert Witness 14
  • 1.10 Reporting the Results of a Forensic Engineering Investigation 16
  • 2 Wind Damage to Residential Structures 23
  • 2.1 Code Requirements for Wind Resistance 23
  • 2.2 Some Basics about Wind 26
  • 2.3 Variation of Wind Speed with Height 32
  • 2.4 Estimating Wind Speed from Localized Damages 33
  • 2.5 Additional Remarks 34
  • 3 Lightning Damage to Well Pumps 37
  • 3.1 Correlation is Not Causation 37
  • 3.2 Converse of Coincidence Argument 38
  • 3.3 Underlying Reasons for Presuming Cause and Effect 39
  • 3.4 A Little about Well Pumps 40
  • 3.5 Lightning Access to a Well Pump 40
  • 3.6 Well Pump Failures 43
  • 3.7 Failure Due to Lightning 44
  • 4 Evaluating Blasting Damage 47
  • 4.1 Pre-Blast and Post-Blast Surveys 47
  • 4.2 Effective Surveys 49
  • 4.3 Types of Damages Caused by Blasting 50
  • 4.4 Flyrock Damage 51
  • 4.5 Surface Blast Craters 53
  • 4.6 Air Concussion Damage 54
  • 4.7 Air Shock Wave Damage 57
  • 4.8 Ground Vibrations 58
  • 4.9 Blast Monitoring with Seismographs 59
  • 4.10 Blasting Study by U.S. Bureau of Mines, Bulletin 442 60
  • 4.11 Blasting Study by U.S. Bureau of Mines, Bulletin 656 61
  • 4.12 Safe Blasting Formula from Bulletin 656 62
  • 4.13 OSM Modifications of the Safe Blasting Formula in Bulletin 656 63
  • 4.14 Human Perception of Blasting Noise and Vibrations 64
  • 4.15 Damages Typical of Blasting 66
  • 4.16 Types of Damage Often Mistakenly Attributed to Blasting 69
  • 4.17 Continuity 72
  • 5 Building Collapse Due to Roof Leakage 75
  • 5.1 Typical Commercial Buildings 1877-1917 75
  • 5.2 Lime Mortar 77
  • 5.3 Roof Leaks 80
  • 5.4 Deferred Maintenance Business Strategy 80
  • 5.5 Structural Damage Due to Roof Leaks 82
  • 5.6 Structural Considerations 84
  • 5.7 Restoration Efforts 87
  • 6 Putting Machines and People Together 89
  • 6.1 Some Background 89
  • 6.2 Vision 92
  • 6.3 Sound 93
  • 6.4 Sequencing 95
  • 6.5 Audi 5000 Example 95
  • 6.6 Guarding 97
  • 6.7 Employer's Responsibilities 99
  • 6.8 Manufacturer's Responsibilities 100
  • 6.9 New Ergonomic Challenges 101
  • 7 Determining the Point of Origin of a Fire 103
  • 7.2 Burning Velocities and "V" Patterns 104
  • 7.3 Burning Velocities and Flame Velocities 107
  • 7.4 Flame Spread Ratings of Materials 110
  • 7.5 A Little Heat Transfer Theory: Conduction and Convection 114
  • 7.6 Radiation 118
  • 7.7 Initial Reconnoiter of the Fire Scene 122
  • 7.8 Centroid Method 124
  • 7.9 Ignition Sources 125
  • 7.10 Warehouse or Box Method 127
  • 7.11 Weighted Centroid Method 128
  • 7.12 Fire Spread Indicators--Sequential Analysis 130
  • 7.13 Combination of Methods 133
  • 8 Electrical Shorting 135
  • 8.2 Thermodynamics of a "Simple Resistive" Circuit 138
  • 8.3 Parallel Short Circuits 146
  • 8.4 Series Short Circuits 149
  • 8.5 Beading 152
  • 8.6 Fuses, Breakers, and Overcurrent Protection 156
  • 8.7 Example Situation Involving Overcurrent Protection 161
  • 8.8 Ground Fault Circuit Interrupters 162
  • 8.9 "Grandfathering" of GFCIs 163
  • 8.10 Other Devices 163
  • 8.11 Lightning Type Surges 165
  • 8.12 Common Places Where Shorting Occurs 165
  • 9 Explosions 175
  • 9.2 High Pressure Gas Expansion Explosions 177
  • 9.3 Deflagrations and Detonations 178
  • 9.4 Some Basic Parameters 182
  • 9.5 Overpressure Front 185
  • 10 Determining the Point of Ignition of an Explosion 191
  • 10.2 Diffusion and Fick's Law 192
  • 10.3 Flame Fronts and Fire Vectors 194
  • 10.4 Pressure Vectors 195
  • 10.52 Epicenter 196
  • 10.6 Energy Considerations 197
  • 11 Arson and Incendiary Fires 201
  • 11.2 Arsonist Profile 203
  • 11.3 Basic Problems of Committing an Arson for Profit 204
  • 11.4 Prisoner's Dilemma 206
  • 11.5 Typical Characteristics of an Arson or Incendiary Fire 207
  • 11.6 Daisy Chains and Other Arson Precursors 209
  • 11.7 Arson Reporting Immunity Laws 211
  • 11.8 Liquid Accelerant Pour Patterns 212
  • 11.9 Spalling 214
  • 11.10 Detecting Accelerants after a Fire 218
  • 12 Simple Skids 223
  • 12.2 Basic Equations 223
  • 12.3 Simple Skids 224
  • 12.4 Tire Friction 226
  • 12.5 Multiple Surfaces 227
  • 12.6 Calculation of Skid Deceleration 229
  • 12.7 Speed Reduction by Skidding 229
  • 12.8 Some Considerations of Data Error 229
  • 12.9 Curved Skids 230
  • 12.10 Brake Failures 231
  • 12.11 Changes in Elevation 233
  • 12.12 Load Shift 235
  • 12.13 Antilock Brake Systems (ABS) 236
  • 13 Simple Vehicular Falls 239
  • 13.2 Basic Equations 239
  • 13.3 Ramp Effects 241
  • 13.4 Air Resistance 244
  • 14 Vehicle Performance 247
  • 14.2 Engine Limitations 247
  • 14.3 Deviations from Theoretical Model 251
  • 14.4 Example Vehicle Analysis 252
  • 14.5 Braking 253
  • 14.6 Stuck Accelerators 254
  • 14.7 Brakes vs. the Engine 255
  • 14.8 Power Brakes 257
  • 14.9 Linkage Problems 258
  • 14.10 Cruise Control 258
  • 14.11 Transmission Problems 259
  • 14.12 Miscellaneous Problems 260
  • 14.13 NHTSA Study 260
  • 14.14 Maximum Climb 261
  • 14.15 Estimating Transmission Efficiency 263
  • 14.16 Estimating Engine Thermal Efficiency 265
  • 14.17 Peel-Out 265
  • 14.18 Lateral Tire Friction 266
  • 14.19 Bootlegger's Turn 266
  • 15 Momentum Methods 271
  • 15.2 Basic Momentum Equations 272
  • 15.3 Properties of an Elastic Collision 273
  • 15.4 Coefficient of Restitution 275
  • 15.5 Properties of a Plastic Collision 276
  • 15.6 Analysis of Forces during a Fixed Barrier Impact 278
  • 15.7 Energy Losses and "[varepsilon]" 279
  • 15.8 Center of Gravity 281
  • 15.9 Moment of Inertia 283
  • 15.10 Torque 285
  • 15.11 Angular Momentum Equations 287
  • 15.12 Solution of Velocities Using the Coefficient of Restitution 288
  • 15.13 Estimation of a Collision Coefficient of Restitution from Fixed Barrier Data 291
  • 15.14 Discussion of Coefficient of Restitution Methods 293
  • 16 Energy Methods 295
  • 16.2 Some Theoretical Underpinnings 297
  • 16.3 General Types of Irreversible Work 303
  • 16.4 Rollovers 304
  • 16.5 Flips 310
  • 16.6 Modeling Vehicular Crush 316
  • 16.7 Post-Buckling Behavior of Columns 318
  • 16.8 Going from Soda Cans to the Old 'Can You Drive?' 320
  • 16.9 Evaluation of Actual Crash Data 322
  • 16.10 Low Velocity Impacts--Accounting for the Elastic Component 323
  • 16.11 Representative Stiffness Coefficients 324
  • 16.12 Some Additional Comments 326
  • 17 Curves and Turns 329
  • 17.1 Transverse Sliding on a Curve 329
  • 17.2 Turnovers 333
  • 17.3 Load Shifting 334
  • 17.4 Side vs. Longitudinal Friction 335
  • 17.5 Cornering and Side Slip 336
  • 17.6 Turning Resistance 337
  • 17.7 Turning Radius 338
  • 17.8 Measuring Roadway Curvature 339
  • 17.9 Motorcycle Turns 340
  • 18 Visual Perception and Motorcycle Accidents 343
  • 18.2 Background Information 344
  • 18.3 Headlight Perception 345
  • 18.4 Daylight Perception 347
  • 18.5 Review of the Factors in Common 348
  • 18.6 Difficulty Finding a Solution 349
  • 19 Interpreting Lamp Filament Damages 351
  • 19.2 Filaments 351
  • 19.3 Oxidation of Tungsten 353
  • 19.4 Brittleness in Tungsten 355
  • 19.5 Ductility in Tungsten 355
  • 19.6 Turn Signals 357
  • 19.7 Other Applications 357
  • 19.8 Melted Glass 357
  • 19.9 Sources of Error 358
  • 20 Automotive Fires 361
  • 20.2 Vehicle Arson and Incendiary Fires 362
  • 20.3 Fuel-Related Fires 364
  • 20.4 Other Fire Loads under the Hood 368
  • 20.5 Electrical Fires 368
  • 20.6 Mechanical and Other Causes 370
  • 21 Hail Damage 373
  • 21.2 Hail Size 375
  • 21.3 Hail Frequency 378
  • 21.4 Hail Damage Fundamentals 380
  • 21.5 Size Threshold for Hail Damage to Roofs 384
  • 21.6 Assessing Hail Damage 387
  • 21.7 Cosmetic Hail Damage--Burnish Marks 395
  • 21.8 Haig Report 398
  • 21.9 Damage to the Sheet Metal of Automobiles and Buildings 401
  • 21.10 Foam Roofing Systems 404
  • 22 Blaming Brick Freeze-Thaw Deterioration on Hail 407
  • 22.1 Some General Information about Bricks 407
  • 22.2 Brick Grades 408
  • 22.3 Basic Problem 409
  • 22.4 Experiment 410
  • 23 Management's Role in Accidents and Catastrophic Events 413
  • 23.2 Human Error vs. Working Conditions 417
  • 23.3 Job Abilities vs. Job Demands 417
  • 23.4 Management's Role in the Causation of Accidents and Catastrophic Events 419.
Description
xvii, 463 p. : ill. ; 24 cm.
Notes
Includes bibliographical references (p. 425-445) and index.
Technical Details
  • Access in Virgo Classic
  • Staff View

    LEADER 09898pam a22003134a 4500
    001 u3679275
    003 SIRSI
    005 20001213142343.0
    008 000602s2001 flua b 001 0 eng
    010
      
      
    a| 00044457
    020
      
      
    a| 0849309115 (alk. paper)
    035
      
      
    a| (Sirsi) i0849309115
    035
      
      
    a| (OCoLC)44391674
    040
      
      
    a| DLC c| DLC d| NhCcYBP d| MvI
    042
      
      
    a| pcc
    050
    0
    0
    a| TA219 b| .N64 2001
    082
    0
    0
    a| 620 2| 21
    090
      
      
    a| SCIENG/TA219 b| .N64 2001
    100
    1
      
    a| Noon, Randall.
    245
    1
    0
    a| Forensic engineering investigation / c| Randall K. Noon.
    260
      
      
    a| Boca Raton [Fla.] : b| CRC Press, c| c2001.
    300
      
      
    a| xvii, 463 p. : b| ill. ; c| 24 cm.
    504
      
      
    a| Includes bibliographical references (p. 425-445) and index.
    505
    0
    0
    g| 1.2 t| Investigation Pyramid g| 3 -- g| 1.3 t| Eyewitness Information g| 6 -- g| 1.4 t| Role in the Legal System g| 8 -- g| 1.5 t| Scientific Method g| 9 -- g| 1.6 t| Applying the Scientific Method to Forensic Engineering g| 10 -- g| 1.7 t| Scientific Method and the Legal System g| 12 -- g| 1.8 t| A Priori Biases g| 13 -- g| 1.9 t| Engineer as Expert Witness g| 14 -- g| 1.10 t| Reporting the Results of a Forensic Engineering Investigation g| 16 -- g| 2 t| Wind Damage to Residential Structures g| 23 -- g| 2.1 t| Code Requirements for Wind Resistance g| 23 -- g| 2.2 t| Some Basics about Wind g| 26 -- g| 2.3 t| Variation of Wind Speed with Height g| 32 -- g| 2.4 t| Estimating Wind Speed from Localized Damages g| 33 -- g| 2.5 t| Additional Remarks g| 34 -- g| 3 t| Lightning Damage to Well Pumps g| 37 -- g| 3.1 t| Correlation is Not Causation g| 37 -- g| 3.2 t| Converse of Coincidence Argument g| 38 -- g| 3.3 t| Underlying Reasons for Presuming Cause and Effect g| 39 -- g| 3.4 t| A Little about Well Pumps g| 40 -- g| 3.5 t| Lightning Access to a Well Pump g| 40 -- g| 3.6 t| Well Pump Failures g| 43 -- g| 3.7 t| Failure Due to Lightning g| 44 -- g| 4 t| Evaluating Blasting Damage g| 47 -- g| 4.1 t| Pre-Blast and Post-Blast Surveys g| 47 -- g| 4.2 t| Effective Surveys g| 49 -- g| 4.3 t| Types of Damages Caused by Blasting g| 50 -- g| 4.4 t| Flyrock Damage g| 51 -- g| 4.5 t| Surface Blast Craters g| 53 -- g| 4.6 t| Air Concussion Damage g| 54 -- g| 4.7 t| Air Shock Wave Damage g| 57 -- g| 4.8 t| Ground Vibrations g| 58 -- g| 4.9 t| Blast Monitoring with Seismographs g| 59 -- g| 4.10 t| Blasting Study by U.S. Bureau of Mines, Bulletin 442 g| 60 -- g| 4.11 t| Blasting Study by U.S. Bureau of Mines, Bulletin 656 g| 61 -- g| 4.12 t| Safe Blasting Formula from Bulletin 656 g| 62 -- g| 4.13 t| OSM Modifications of the Safe Blasting Formula in Bulletin 656 g| 63 -- g| 4.14 t| Human Perception of Blasting Noise and Vibrations g| 64 -- g| 4.15 t| Damages Typical of Blasting g| 66 -- g| 4.16 t| Types of Damage Often Mistakenly Attributed to Blasting g| 69 -- g| 4.17 t| Continuity g| 72 -- g| 5 t| Building Collapse Due to Roof Leakage g| 75 -- g| 5.1 t| Typical Commercial Buildings 1877-1917 g| 75 -- g| 5.2 t| Lime Mortar g| 77 -- g| 5.3 t| Roof Leaks g| 80 -- g| 5.4 t| Deferred Maintenance Business Strategy g| 80 -- g| 5.5 t| Structural Damage Due to Roof Leaks g| 82 -- g| 5.6 t| Structural Considerations g| 84 -- g| 5.7 t| Restoration Efforts g| 87 -- g| 6 t| Putting Machines and People Together g| 89 -- g| 6.1 t| Some Background g| 89 -- g| 6.2 t| Vision g| 92 -- g| 6.3 t| Sound g| 93 -- g| 6.4 t| Sequencing g| 95 -- g| 6.5 t| Audi 5000 Example g| 95 -- g| 6.6 t| Guarding g| 97 -- g| 6.7 t| Employer's Responsibilities g| 99 -- g| 6.8 t| Manufacturer's Responsibilities g| 100 -- g| 6.9 t| New Ergonomic Challenges g| 101 -- g| 7 t| Determining the Point of Origin of a Fire g| 103 -- g| 7.2 t| Burning Velocities and "V" Patterns g| 104 -- g| 7.3 t| Burning Velocities and Flame Velocities g| 107 -- g| 7.4 t| Flame Spread Ratings of Materials g| 110 -- g| 7.5 t| A Little Heat Transfer Theory: Conduction and Convection g| 114 -- g| 7.6 t| Radiation g| 118 -- g| 7.7 t| Initial Reconnoiter of the Fire Scene g| 122 -- g| 7.8 t| Centroid Method g| 124 -- g| 7.9 t| Ignition Sources g| 125 -- g| 7.10 t| Warehouse or Box Method g| 127 -- g| 7.11 t| Weighted Centroid Method g| 128 -- g| 7.12 t| Fire Spread Indicators--Sequential Analysis g| 130 -- g| 7.13 t| Combination of Methods g| 133 -- g| 8 t| Electrical Shorting g| 135 -- g| 8.2 t| Thermodynamics of a "Simple Resistive" Circuit g| 138 -- g| 8.3 t| Parallel Short Circuits g| 146 -- g| 8.4 t| Series Short Circuits g| 149 -- g| 8.5 t| Beading g| 152 -- g| 8.6 t| Fuses, Breakers, and Overcurrent Protection g| 156 -- g| 8.7 t| Example Situation Involving Overcurrent Protection g| 161 -- g| 8.8 t| Ground Fault Circuit Interrupters g| 162 -- g| 8.9 t| "Grandfathering" of GFCIs g| 163 -- g| 8.10 t| Other Devices g| 163 -- g| 8.11 t| Lightning Type Surges g| 165 -- g| 8.12 t| Common Places Where Shorting Occurs g| 165 -- g| 9 t| Explosions g| 175 -- g| 9.2 t| High Pressure Gas Expansion Explosions g| 177 -- g| 9.3 t| Deflagrations and Detonations g| 178 -- g| 9.4 t| Some Basic Parameters g| 182 -- g| 9.5 t| Overpressure Front g| 185 -- g| 10 t| Determining the Point of Ignition of an Explosion g| 191 -- g| 10.2 t| Diffusion and Fick's Law g| 192 -- g| 10.3 t| Flame Fronts and Fire Vectors g| 194 -- g| 10.4 t| Pressure Vectors g| 195 -- g| 10.52 t| Epicenter g| 196 -- g| 10.6 t| Energy Considerations g| 197 -- g| 11 t| Arson and Incendiary Fires g| 201 -- g| 11.2 t| Arsonist Profile g| 203 -- g| 11.3 t| Basic Problems of Committing an Arson for Profit g| 204 -- g| 11.4 t| Prisoner's Dilemma g| 206 -- g| 11.5 t| Typical Characteristics of an Arson or Incendiary Fire g| 207 -- g| 11.6 t| Daisy Chains and Other Arson Precursors g| 209 -- g| 11.7 t| Arson Reporting Immunity Laws g| 211 -- g| 11.8 t| Liquid Accelerant Pour Patterns g| 212 -- g| 11.9 t| Spalling g| 214 -- g| 11.10 t| Detecting Accelerants after a Fire g| 218 -- g| 12 t| Simple Skids g| 223 -- g| 12.2 t| Basic Equations g| 223 -- g| 12.3 t| Simple Skids g| 224 -- g| 12.4 t| Tire Friction g| 226 -- g| 12.5 t| Multiple Surfaces g| 227 -- g| 12.6 t| Calculation of Skid Deceleration g| 229 -- g| 12.7 t| Speed Reduction by Skidding g| 229 -- g| 12.8 t| Some Considerations of Data Error g| 229 -- g| 12.9 t| Curved Skids g| 230 -- g| 12.10 t| Brake Failures g| 231 -- g| 12.11 t| Changes in Elevation g| 233 -- g| 12.12 t| Load Shift g| 235 -- g| 12.13 t| Antilock Brake Systems (ABS) g| 236 -- g| 13 t| Simple Vehicular Falls g| 239 -- g| 13.2 t| Basic Equations g| 239 -- g| 13.3 t| Ramp Effects g| 241 -- g| 13.4 t| Air Resistance g| 244 -- g| 14 t| Vehicle Performance g| 247 -- g| 14.2 t| Engine Limitations g| 247 -- g| 14.3 t| Deviations from Theoretical Model g| 251 -- g| 14.4 t| Example Vehicle Analysis g| 252 -- g| 14.5 t| Braking g| 253 -- g| 14.6 t| Stuck Accelerators g| 254 -- g| 14.7 t| Brakes vs. the Engine g| 255 -- g| 14.8 t| Power Brakes g| 257 -- g| 14.9 t| Linkage Problems g| 258 -- g| 14.10 t| Cruise Control g| 258 -- g| 14.11 t| Transmission Problems g| 259 -- g| 14.12 t| Miscellaneous Problems g| 260 -- g| 14.13 t| NHTSA Study g| 260 -- g| 14.14 t| Maximum Climb g| 261 -- g| 14.15 t| Estimating Transmission Efficiency g| 263 -- g| 14.16 t| Estimating Engine Thermal Efficiency g| 265 -- g| 14.17 t| Peel-Out g| 265 -- g| 14.18 t| Lateral Tire Friction g| 266 -- g| 14.19 t| Bootlegger's Turn g| 266 -- g| 15 t| Momentum Methods g| 271 -- g| 15.2 t| Basic Momentum Equations g| 272 -- g| 15.3 t| Properties of an Elastic Collision g| 273 -- g| 15.4 t| Coefficient of Restitution g| 275 -- g| 15.5 t| Properties of a Plastic Collision g| 276 -- g| 15.6 t| Analysis of Forces during a Fixed Barrier Impact g| 278 -- g| 15.7 t| Energy Losses and "[varepsilon]" g| 279 -- g| 15.8 t| Center of Gravity g| 281 -- g| 15.9 t| Moment of Inertia g| 283 -- g| 15.10 t| Torque g| 285 -- g| 15.11 t| Angular Momentum Equations g| 287 -- g| 15.12 t| Solution of Velocities Using the Coefficient of Restitution g| 288 -- g| 15.13 t| Estimation of a Collision Coefficient of Restitution from Fixed Barrier Data g| 291 -- g| 15.14 t| Discussion of Coefficient of Restitution Methods g| 293 -- g| 16 t| Energy Methods g| 295 -- g| 16.2 t| Some Theoretical Underpinnings g| 297 -- g| 16.3 t| General Types of Irreversible Work g| 303 -- g| 16.4 t| Rollovers g| 304 -- g| 16.5 t| Flips g| 310 -- g| 16.6 t| Modeling Vehicular Crush g| 316 -- g| 16.7 t| Post-Buckling Behavior of Columns g| 318 -- g| 16.8 t| Going from Soda Cans to the Old 'Can You Drive?' g| 320 -- g| 16.9 t| Evaluation of Actual Crash Data g| 322 -- g| 16.10 t| Low Velocity Impacts--Accounting for the Elastic Component g| 323 -- g| 16.11 t| Representative Stiffness Coefficients g| 324 -- g| 16.12 t| Some Additional Comments g| 326 -- g| 17 t| Curves and Turns g| 329 -- g| 17.1 t| Transverse Sliding on a Curve g| 329 -- g| 17.2 t| Turnovers g| 333 -- g| 17.3 t| Load Shifting g| 334 -- g| 17.4 t| Side vs. Longitudinal Friction g| 335 -- g| 17.5 t| Cornering and Side Slip g| 336 -- g| 17.6 t| Turning Resistance g| 337 -- g| 17.7 t| Turning Radius g| 338 -- g| 17.8 t| Measuring Roadway Curvature g| 339 -- g| 17.9 t| Motorcycle Turns g| 340 -- g| 18 t| Visual Perception and Motorcycle Accidents g| 343 -- g| 18.2 t| Background Information g| 344 -- g| 18.3 t| Headlight Perception g| 345 -- g| 18.4 t| Daylight Perception g| 347 -- g| 18.5 t| Review of the Factors in Common g| 348 -- g| 18.6 t| Difficulty Finding a Solution g| 349 -- g| 19 t| Interpreting Lamp Filament Damages g| 351 -- g| 19.2 t| Filaments g| 351 -- g| 19.3 t| Oxidation of Tungsten g| 353 -- g| 19.4 t| Brittleness in Tungsten g| 355 -- g| 19.5 t| Ductility in Tungsten g| 355 -- g| 19.6 t| Turn Signals g| 357 -- g| 19.7 t| Other Applications g| 357 -- g| 19.8 t| Melted Glass g| 357 -- g| 19.9 t| Sources of Error g| 358 -- g| 20 t| Automotive Fires g| 361 -- g| 20.2 t| Vehicle Arson and Incendiary Fires g| 362 -- g| 20.3 t| Fuel-Related Fires g| 364 -- g| 20.4 t| Other Fire Loads under the Hood g| 368 -- g| 20.5 t| Electrical Fires g| 368 -- g| 20.6 t| Mechanical and Other Causes g| 370 -- g| 21 t| Hail Damage g| 373 -- g| 21.2 t| Hail Size g| 375 -- g| 21.3 t| Hail Frequency g| 378 -- g| 21.4 t| Hail Damage Fundamentals g| 380 -- g| 21.5 t| Size Threshold for Hail Damage to Roofs g| 384 -- g| 21.6 t| Assessing Hail Damage g| 387 -- g| 21.7 t| Cosmetic Hail Damage--Burnish Marks g| 395 -- g| 21.8 t| Haig Report g| 398 -- g| 21.9 t| Damage to the Sheet Metal of Automobiles and Buildings g| 401 -- g| 21.10 t| Foam Roofing Systems g| 404 -- g| 22 t| Blaming Brick Freeze-Thaw Deterioration on Hail g| 407 -- g| 22.1 t| Some General Information about Bricks g| 407 -- g| 22.2 t| Brick Grades g| 408 -- g| 22.3 t| Basic Problem g| 409 -- g| 22.4 t| Experiment g| 410 -- g| 23 t| Management's Role in Accidents and Catastrophic Events g| 413 -- g| 23.2 t| Human Error vs. Working Conditions g| 417 -- g| 23.3 t| Job Abilities vs. Job Demands g| 417 -- g| 23.4 t| Management's Role in the Causation of Accidents and Catastrophic Events g| 419.
    596
      
      
    a| 5
    650
      
    0
    a| Forensic engineering.
    999
      
      
    a| TA219 .N64 2001 w| LC i| X004473039 l| STACKS m| SCI-ENG t| BOOK
▾See more
▴See less

Availability

Google Preview

Google Books Preview
Library Location Map Availability Call Number
Brown Science and Engineering Stacks N/A Available