Item Details

Print View

Igneous Petrology

Myron G. Best, Eric H. Christiansen
Format
Book
Published
Malden, Mass. : Blackwell Science, c2001.
Language
English
ISBN
0865425418
Contents
  • Chapter 1 Overview of Fundamental Concepts
  • 1.1 Energy and the Mantle Heat Engine 2
  • 1.1.1 Forms of Energy 2
  • 1.1.2 Flow and Transformation of Energy 3
  • 1.1.3 Heat Flow in the Earth 3
  • 1.1.4 Implications of Mantle Convection 8
  • 1.1.5 Energy Budget of the Earth 9
  • 1.2 Gravity, Pressure, and Geobaric Gradient 10
  • 1.3 Rock-Forming Processes as Changing States of Geologic Systems 10
  • 1.4 Rock Properties and Their Significance 11
  • 1.4.1 Composition 12
  • 1.4.2 Field Relations 13
  • 1.4.3 Fabric 14
  • 1.5 How Petrologists Study Rocks 14
  • Chapter 2 Composition and Classification of Magmatic Rocks
  • 2.1 Analytical Procedures 16
  • 2.1.1 Sampling 16
  • 2.1.2 Analyses 17
  • 2.2 Mineral Composition of Magmatic Rocks 22
  • 2.2.1 Glass 22
  • 2.3 Chemical Composition of Magmatic Rocks 23
  • 2.3.1 Variation Diagrams 23
  • 2.3.2 Continuous Spectrum of Rock Compositions 24
  • 2.4 Classification of Magmatic Rocks 25
  • 2.4.1 Classification Based on Fabric 27
  • 2.4.2 Classification Based on Field Relations 27
  • 2.4.3 Classification Based on Mineralogical and Modal Composition 28
  • 2.4.4 Classification Based on Whole-Rock Chemical Composition 30
  • 2.4.5 Rock Suites 35
  • 2.4.6 Classification of Basalt 37
  • 2.5 Trace Elements 37
  • 2.5.1 Partition Coefficients and Trace Element Compatibility 38
  • 2.5.2 Rare Earth Elements 40
  • 2.5.3 Other Normalized Trace Element Diagrams 42
  • 2.6 Isotopes 44
  • 2.6.1 Stable Isotopes 44
  • 2.6.2 Radiogenic Isotopes 45
  • 2.6.3 Cosmogenic Isotopes: Beryllium 47
  • Chapter 3 Thermodynamic and Kinetics: an Introduction
  • 3.1 Why is Thermodynamics Important? 51
  • 3.2 Elementary Concepts of Thermodynamics 52
  • 3.2.1 Thermodynamic States, Processes, and State Variables 52
  • 3.2.2 First Law of Thermodynamics 53
  • 3.2.3 Enthalpy 53
  • 3.2.4 Enthropy and the Second and Third Laws of Thermodynamics 54
  • 3.2.5 Gibbs Free Energy 55
  • 3.3 Stability (Phase) Diagrams 56
  • 3.3.1 Slope of the Melting Curve 57
  • 3.3.2 Determination of Phase Diagrams 58
  • 3.4 Thermodynamics of Solutions: Some Basic Concepts 59
  • 3.4.1 Components and Mole Fractions 59
  • 3.4.2 Partial Molar Volume 59
  • 3.4.3 Partial Molar Gibbs Free Energy: The Chemical Potential 60
  • 3.4.4 P-T-X Phase Diagram 61
  • 3.5 Application of Thermodynamics to Solutions 61
  • 3.5.1 Fugacity and Activity 61
  • 3.5.2 Equilibrium Constants 62
  • 3.5.3 Silica Activity, Silica Buffers, and Silica Saturation 63
  • 3.5.4 Oxygen Buffers 64
  • 3.5.5 Fe-Ti Oxide Buffers: Oxygen Geobarometers and Geothermometers 66
  • 3.6 Kinetics 66
  • 3.6.1 Activation Energy 67
  • 3.6.2 Overstepping and Metastable Persistence and Growth 68
  • Chapter 4 Silicate Melts and Volatile Fluids in Magma Systems
  • 4.1 Nature of Magma 72
  • 4.1.1 Atomic Structure of Melts 73
  • 4.2 Volatile Fluids in Melts 75
  • 4.2.1 Nature of Volatiles 75
  • 4.2.2 Solubilities of Volatiles in Silicate Melts 76
  • 4.2.3 Exsolution of Volatiles from a Melt 79
  • 4.3 Consequences of Fluid Exsolution from Melts 80
  • 4.3.1 Explosive Volcanism 80
  • 4.3.2 Global Atmosphere and Climate 82
  • 4.3.3 Fumaroles, Hydrothermal Solutions, Ore Deposits, and Geothermal Reservoirs 84
  • Chapter 5 Crystal-Melt Equilibria in Magmatic Systems
  • 5.1 Phase Diagrams 87
  • 5.1.1 Phase Rule 87
  • 5.2 Melting of a Pure Mineral and Polymorphism 89
  • 5.2.1 Volatile-Free Equilibria 89
  • 5.2.2 Melting of a Pure Mineral in the Presence of Volatiles 89
  • 5.3 Phase Relations in Binary Systems 90
  • 5.3.1 Basic Concepts: CaMgSi[subscript 2]O[subscript 6] (Di)-CaAl[subscript 2]Si[subscript 2]O[subscript 8] (An) System at P = 1 atm 90
  • 5.3.2 Mg[subscript 2]SiO[subscript 4]-SiO[subscript 2] System at 1 atm 93
  • 5.4 Crystal-Melt Equilibria in Real Basalt Magmas 98
  • 5.4.1 Makaopuhi Basalt 98
  • 5.4.2 Basalt Magmas at High Pressures and High Water Concentrations 99
  • 5.5 Feldspar-Melt Equilibria 100
  • 5.5.1 KAlSi[subscript 3]O[subscript 8] (Kf)-CaAl[subscript 2]Si[subscript 2]O[subscript 8] (An) Binary System: Limited Solid Solution 100
  • 5.5.2 NaAlSi[subscript 3]O[subscript 8] (Ab)-CaAl[subscript 2]Si[subscript 2]O[subscript 8] (An) Binary Plagioclase System: Complete Solid Solution 101
  • 5.5.3 NaAlSi[subscript 3]O[subscript 8] (Ab)-KAlSi[subscript 3]O[subscript 8] (Kf) Binary Alkali Feldspar System 102
  • 5.5.4 KAlSi[subscript 3]O[subscript 8] (Kf)-NaAlSi[subscript 3]O[subscript 8] (Ab)-CaAl[subscript 2]Si[subscript 2]O[subscript 8] (An) Ternary Feldspar System 104
  • 5.5.5 KAlSi[subscript 3]O[subscript 8] (Kf)-NaAlSi[subscript 3]O[subscript 8] (Ab)-SiO[subscript 2] (silica)-H[subscript 2]O: The Granite System 108
  • 5.6 Crystal-Melt Equilibria Involving Anhydrous Mafic Minerals: Olivine and Pyroxene 112
  • 5.7 Crystal-Melt Equilibria in Hydrous Magma Systems 113
  • 5.7.1 Equilibria in the Granodiorite-Water System 113
  • 5.7.2 Equilibria Involving Melt and Micas and Amphiboles 114
  • 5.8 Geothermometers and Geobarometers 117
  • 5.8.1 Assessing States of Equilibrium in Rocks 117
  • 5.9 A Brief Comment Regarding Subsolidus Reactions in Magmatic Rocks 118
  • Chapter 6 Chemical Dynamics of Melts and Crystals
  • 6.1 Viscosity of Melts 122
  • 6.2 Chemical Diffusion 126
  • 6.2.1 Types of Diffusion 126
  • 6.2.2 Theory and Measurement 127
  • 6.2.3 Factors Governing Diffusivities 128
  • 6.2.4 Average Diffusion Distance 129
  • 6.2.5 Soret Diffusion 129
  • 6.3 Diffusion of Heat 130
  • 6.3.1 Role of Body Shape on Conductive Cooling 131
  • 6.4 Interfacial Energy 131
  • 6.5 Crystallization 133
  • 6.5.1 Why Is It Important to Study Nucleation and Crystallization? 133
  • 6.5.2 Nucleation 133
  • 6.5.3 Crystal Growth 135
  • 6.5.4 Crystal Size in Magmatic Rocks 137
  • 6.6 Secondary Overprinting Processes Modifying Primary Crystal Size and Shape 139
  • 6.6.1 Crystal Dissolution 139
  • 6.6.2 Textural Equilibration: Grain Boundary Modification 140
  • 6.7 Vesiculation and Fragmentation of Magma 142
  • 6.7.1 Nucleation and Growth of Bubbles--Vesiculation 142
  • 6.7.2 Melt Fragmentation and Explosive Volcanism 145
  • Chapter 7 Kinetic Paths and Fabric of Magmatic Rocks
  • 7.1 Fabrics Related to Crystallization Path: Crystallinity and Grain Size 151
  • 7.1.1 Glassy Texture 151
  • 7.1.2 Aphanitic Texture 153
  • 7.1.3 Phaneritic Texture 155
  • 7.1.4 Porphyritic Texture 157
  • 7.1.5 Poikilitic and Ophitic Textures 158
  • 7.2 Fabrics Related to Crystallization Path: Grain Shape 158
  • 7.3 Fabrics Related to Crystallization Path: Inhomogeneous Grains 160
  • 7.3.1 Zoned Crystals 160
  • 7.3.2 Reaction Rims 160
  • 7.3.3 Subsolidus Decomposition and Exsolution in Unstable Minerals 161
  • 7.4 Fabric Related to Textural Equilibration: Secondary Grain-Boundary Modification 162
  • 7.5 A Word of Caution on the Interpretation of Crystalline Textures 163
  • 7.5.1 Magmatic Rock Texture and Order of Crystallization 163
  • 7.6 Fabrics Related to Nonexplosive Exsolution of Volatile Fluids 165
  • 7.7 Volcanicalastic Fabrics Related to Fragmentation of Magma 166
  • 7.7.1 Pyroclastic Processes 167
  • 7.7.2 Autoclastic Processes 169
  • 7.8 Fabrics Related to Consolidation of Volcaniclasts into Solid Rock 171
  • 7.9 Anisotropic Fabrics 171
  • 7.9.1 Descriptive Geometric Aspects 171
  • 7.9.2 Origin 175
  • 7.10 Inclusions 181
  • Chapter 8 Physical and Thermal Dynamics of Bodies of Magma
  • 8.1 Stress and Deformation 183
  • 8.1.1 Concepts of Stress 183
  • 8.1.2 Deformation 184
  • 8.1.3 Ideal Response to Stress 185
  • 8.2 Rheology of Rocks and Magmas 186
  • 8.2.1 Rheology of Rocks 187
  • 8.2.2 Non-Newtonian Rheology of Magma 190
  • 8.2.3 Deformation and Flow of Magma 191
  • 8.3 Density of Magma and Buoyancy 194
  • 8.3.1 Density Determinations 194
  • 8.3.2 Densities of Minerals and Melts 195
  • 8.3.3 Buoyancy 196
  • 8.4 Conductive Heat Transfer 197
  • 8.4.1 Conductive Cooling Models 198
  • 8.5 Advective Heat Transfer 199
  • 8.6 Magma Convection 201
  • 8.6.1 Thermal Convection in a Completely Molten Body of Melt 201
  • 8.6.2 Thermochemical Convection in Crystallizing Magmas 203
  • 8.6.3 Replenishment in Evolving Magma Chambers 205
  • Chapter 9 Magma Ascent and Emplacement: Field Relations of Intrusions
  • 9.1 Movement of Magma in the Earth 210
  • 9.1.1 Neutral Buoyancy and the Crustal Density Filter 210
  • 9.1.2 Magma Overpressure 212
  • 9.1.3 Mechanisms of Magma Ascent 213
  • 9.2 Sheet Intrusions (Dikes) 213
  • 9.2.1 Description and Terminology 213
  • 9.2.2 Some Thermomechanical Concepts Pertaining to Emplacement of Sheet Intrusions 216
  • 9.2.3 Geometry and Orientation of Sheet Intrusions 218
  • 9.2.4 Basalt Diking in Extensional Regimes 220
  • 9.3 Diapirs 222
  • 9.4 Magma Emplacement in the Crust: Providing the Space 224
  • 9.4.1 Some Aspects of Granitic Plutons 225
  • 9.4.2 Emplacement Processes and Factors 226
  • 9.4.3 Intrusion-Host Rock Interface 236
  • Chapter 10 Magma Extrusion: Field Relations of Volcanic Rock Bodies
  • 10.1 Overview of Extrusion: Controls and Factors 241
  • 10.1.1 Moving Magma to the Surface: What Allows Extrusion 242
  • 10.1.2 Two Types of Extrusions: Explosive and Effusive 242
  • 10.2 Effusions of Basaltic Lava 245
  • 10.2.1 Types of Basaltic Lava Flows 245
  • 10.2.2 Columnar Joints 249
  • 10.2.3 Subaerial Lava Accumulations 250
  • 10.2.4 Submarine Basaltic Accumulations 252
  • 10.3 Effusions of Silicic Lava 254
  • 10.3.1 Morphological Characteristics and Growth 254
  • 10.3.2 Internal Fabric 256
  • 10.4 Explosive Eruptions 259
  • -- 10.4.1 Explosive Mechanisms: Production of Pyroclasts 259
  • 10.4.2 Pyroclasts in Volcanic Plumes 262
  • 10.4.3 Pyroclast Transport and Deposition 262
  • 10.4.4 Explosive Style 267
  • 10.4.5 Pyroclastic Flows and Deposits: Overview 270
  • 10.4.6 Block-and-Ash Flows 271
  • 10.4.7 Ignimbrite-Forming Ash Flows 271
  • 10.4.8 Calderas 275
  • 10.4.9 Subaqueous Pyroclastic Flows 277
  • 10.5 Other Volcaniclastic Deposits 278
  • 10.5.1 Epiclastic Processes and Deposits 278
  • 10.5.2 Volcanic Debris Flows: Lahars 278
  • 10.5.3 Composite Volcanoes 279
  • Chapter 11 Generation of Magma
  • 11.1 Melting of Solid Rock: Changes in P, T, and X 283
  • 11.1.1 Temperature Increase, +[Delta]T 284
  • 11.1.2 Decompression, -[Delta]P 286
  • 11.1.3 Changes in Water Concentration, +[Delta]X[subscript water] 287
  • 11.2 Mantle Source Rock 288
  • 11.2.1 Mantle-Derived Inclusions 289
  • 11.2.2 Metasomatized and Enriched Mantle Rock 291
  • 11.3 Generation of Magma in Mantle Peridotite 295
  • 11.3.1 Equilibrium (Batch) Partial Melting of Lherzolite 295
  • 11.3.2 Fractional Partial Melting of Lherzolite 297
  • 11.3.3 Factors Controlling Partial Melt Composition 297
  • 11.3.4 Modeling Partial Melting Using Trace Elements 299
  • 11.3.5 Characteristics of Primary Magma 300
  • 11.4 Magma Generation in Subarc Mantle Wedge 300
  • 11.4.1 Dehydration of Subducting Oceanic Crust 301
  • 11.4.2 Magma Generation in the Mantle Wedge 303
  • 11.4.3 Partial Melting of Subducted Basaltic Oceanic Crust: Adakite 305
  • 11.5 Generation of Alkaline Magmas in Metasomatically Enriched Mantle Peridotite 306
  • 11.5.1 Metasomatized Mantle Connection 307
  • 11.6 Magma Generation in the Continental Crust 308
  • 11.6.1 Partial Melting of Continental Source Rocks 309
  • 11.6.2 "Alphabet" Granitic Magmas: Contrasting Sources 311
  • 11.6.3 Crystalline Residues 312
  • 11.6.4 Melt Segregation 313
  • 11.6.5 Felsic Magma Generation and the Mantle Connection 313
  • Chapter 12 Differentiation of Magmas
  • 12.1 Using Variation Diagrams to Characterize Differentiation Processes 317
  • 12.2 Closed-System Magmatic Differentiation 318
  • 12.2.1 Crystal-Melt Fractionation 318
  • 12.2.2 Physical Separation of Immiscible Melts 322
  • 12.2.3 Fluid-Melt Separation: Pegmatites 324
  • 12.3 Open-System Differentiation: Hybrid Magmas 325
  • 12.3.1 Magma Mixing 325
  • 12.3.2 Assimilation 328
  • 12.4 Differentiation in Basaltic Intrusions 329
  • 12.4.1 Palisades Sill 329
  • 12.4.2 Layered Intrusions 331
  • 12.4.3 Oceanic-Ridge Magma Chambers 337
  • 12.5 Origin of the Calc-Alkaline Differentiation Trend 338
  • 12.5.1 Tonga--Kermadec--New Zealand Arc 339
  • 12.5.2 Factors Controlling Development of the Calc-Alkaline Trend 339
  • Chapter 13 Petrotectonic Associations
  • 13.1 Oceanic Spreading Ridges and Related Basaltic Rocks 349
  • 13.1.1 Mid-Ocean Ridge Basalt (MORB) 350
  • 13.1.2 Iceland 353
  • 13.1.3 Mantle Reservoirs 354
  • 13.2 Mantle Plumes and Oceanic Island Volcanic Rocks 354
  • 13.2.1 Character of Volcanic Rocks 356
  • 13.2.2 Hawaiian Islands: Tholeiitic and Alkaline Associations 359
  • 13.2.3 Highly Alkaline Rocks on Other Oceanic Islands 362
  • 13.3 Plume Heads and Basalt Flood Plateau Lavas 364
  • 13.3.1 Oceanic Plateaus 364
  • 13.3.2 Continental Flood Basalt Plateaus 365
  • 13.3.3 Continental Breakup 369
  • 13.4 Arc Magmatism: Overview 370
  • 13.5 Oceanic Island Arcs 371
  • 13.5.1 Rock Associations 372
  • 13.5.2 Magma Evolution 374
  • 13.5.3 Back-Arc Basins 375
  • 13.6 Ophiolite 376
  • 13.6.1 Characteristics 376
  • 13.6.2 Origin and Emplacement 377
  • 13.7 Calc-Alkaline Continental Margin Magmatic Arcs 377
  • 13.7.1 Volcanic Arcs on Continental Margins 378
  • 13.7.2 Plutonic Arcs on Continental Margins: Granitic Batholiths 382
  • 13.8 Granites in Continent-Continent Collision Zones 386
  • 13.9 Anorogenic A-Type Felsic Rocks 387
  • 13.9.1 Characteristics 388
  • 13.9.2 Petrogenesis 389
  • 13.9.3 Anorogenic Ring Complexes in Nigeria and Niger 390
  • 13.10 Granites and Granites 390
  • 13.11 Continental Rift Associations: Bimodal and Alkaline Rocks 392
  • 13.11.1 Transitions from Continental Arc to Rift Associations in Western North America 394
  • 13.11.2 Magmatism in the East African Rift System 395
  • 13.12 Alkaline Orphans, Mostly in Stable Cratons 397
  • 13.12.1 Lamprophyres 398
  • 13.12.2 Lamproite, Orangeite, and Kimberlite Clans 398.
Description
xvi, 458 p. : ill., maps ; 28 cm.
Notes
Includes bibliographical references (p. [411]-426) and index.
Technical Details
  • Access in Virgo Classic
  • Staff View

    LEADER 15542pam a22003374a 4500
    001 u3677248
    003 SIRSI
    005 20001204151525.0
    008 000620s2001 mauab b 001 0 eng
    010
      
      
    a| 00056480
    020
      
      
    a| 0865425418
    035
      
      
    a| (Sirsi) i0865425418
    035
      
      
    a| (OCoLC)44468851
    040
      
      
    a| DLC c| DLC d| DLC d| MvI
    042
      
      
    a| pcc
    050
    0
    0
    a| QE461 b| .B54 2001
    082
    0
    0
    a| 552/.1 2| 21
    090
      
      
    a| SCIENG/QE461 b| .B54 2001
    100
    1
      
    a| Best, Myron G.
    245
    1
    0
    a| Igneous petrology / c| Myron G. Best, Eric H. Christiansen.
    260
      
      
    a| Malden, Mass. : b| Blackwell Science, c| c2001.
    300
      
      
    a| xvi, 458 p. : b| ill., maps ; c| 28 cm.
    504
      
      
    a| Includes bibliographical references (p. [411]-426) and index.
    505
    0
    0
    g| Chapter 1 t| Overview of Fundamental Concepts -- g| 1.1 t| Energy and the Mantle Heat Engine g| 2 -- g| 1.1.1 t| Forms of Energy g| 2 -- g| 1.1.2 t| Flow and Transformation of Energy g| 3 -- g| 1.1.3 t| Heat Flow in the Earth g| 3 -- g| 1.1.4 t| Implications of Mantle Convection g| 8 -- g| 1.1.5 t| Energy Budget of the Earth g| 9 -- g| 1.2 t| Gravity, Pressure, and Geobaric Gradient g| 10 -- g| 1.3 t| Rock-Forming Processes as Changing States of Geologic Systems g| 10 -- g| 1.4 t| Rock Properties and Their Significance g| 11 -- g| 1.4.1 t| Composition g| 12 -- g| 1.4.2 t| Field Relations g| 13 -- g| 1.4.3 t| Fabric g| 14 -- g| 1.5 t| How Petrologists Study Rocks g| 14 -- g| Chapter 2 t| Composition and Classification of Magmatic Rocks -- g| 2.1 t| Analytical Procedures g| 16 -- g| 2.1.1 t| Sampling g| 16 -- g| 2.1.2 t| Analyses g| 17 -- g| 2.2 t| Mineral Composition of Magmatic Rocks g| 22 -- g| 2.2.1 t| Glass g| 22 -- g| 2.3 t| Chemical Composition of Magmatic Rocks g| 23 -- g| 2.3.1 t| Variation Diagrams g| 23 -- g| 2.3.2 t| Continuous Spectrum of Rock Compositions g| 24 -- g| 2.4 t| Classification of Magmatic Rocks g| 25 -- g| 2.4.1 t| Classification Based on Fabric g| 27 -- g| 2.4.2 t| Classification Based on Field Relations g| 27 -- g| 2.4.3 t| Classification Based on Mineralogical and Modal Composition g| 28 -- g| 2.4.4 t| Classification Based on Whole-Rock Chemical Composition g| 30 -- g| 2.4.5 t| Rock Suites g| 35 -- g| 2.4.6 t| Classification of Basalt g| 37 -- g| 2.5 t| Trace Elements g| 37 -- g| 2.5.1 t| Partition Coefficients and Trace Element Compatibility g| 38 -- g| 2.5.2 t| Rare Earth Elements g| 40 -- g| 2.5.3 t| Other Normalized Trace Element Diagrams g| 42 -- g| 2.6 t| Isotopes g| 44 -- g| 2.6.1 t| Stable Isotopes g| 44 -- g| 2.6.2 t| Radiogenic Isotopes g| 45 -- g| 2.6.3 t| Cosmogenic Isotopes: Beryllium g| 47 -- g| Chapter 3 t| Thermodynamic and Kinetics: an Introduction -- g| 3.1 t| Why is Thermodynamics Important? g| 51 -- g| 3.2 t| Elementary Concepts of Thermodynamics g| 52 -- g| 3.2.1 t| Thermodynamic States, Processes, and State Variables g| 52 -- g| 3.2.2 t| First Law of Thermodynamics g| 53 -- g| 3.2.3 t| Enthalpy g| 53 -- g| 3.2.4 t| Enthropy and the Second and Third Laws of Thermodynamics g| 54 -- g| 3.2.5 t| Gibbs Free Energy g| 55 -- g| 3.3 t| Stability (Phase) Diagrams g| 56 -- g| 3.3.1 t| Slope of the Melting Curve g| 57 -- g| 3.3.2 t| Determination of Phase Diagrams g| 58 -- g| 3.4 t| Thermodynamics of Solutions: Some Basic Concepts g| 59 -- g| 3.4.1 t| Components and Mole Fractions g| 59 -- g| 3.4.2 t| Partial Molar Volume g| 59 -- g| 3.4.3 t| Partial Molar Gibbs Free Energy: The Chemical Potential g| 60 -- g| 3.4.4 t| P-T-X Phase Diagram g| 61 -- g| 3.5 t| Application of Thermodynamics to Solutions g| 61 -- g| 3.5.1 t| Fugacity and Activity g| 61 -- g| 3.5.2 t| Equilibrium Constants g| 62 -- g| 3.5.3 t| Silica Activity, Silica Buffers, and Silica Saturation g| 63 -- g| 3.5.4 t| Oxygen Buffers g| 64 -- g| 3.5.5 t| Fe-Ti Oxide Buffers: Oxygen Geobarometers and Geothermometers g| 66 -- g| 3.6 t| Kinetics g| 66 -- g| 3.6.1 t| Activation Energy g| 67 -- g| 3.6.2 t| Overstepping and Metastable Persistence and Growth g| 68 -- g| Chapter 4 t| Silicate Melts and Volatile Fluids in Magma Systems -- g| 4.1 t| Nature of Magma g| 72 -- g| 4.1.1 t| Atomic Structure of Melts g| 73 -- g| 4.2 t| Volatile Fluids in Melts g| 75 -- g| 4.2.1 t| Nature of Volatiles g| 75 -- g| 4.2.2 t| Solubilities of Volatiles in Silicate Melts g| 76 -- g| 4.2.3 t| Exsolution of Volatiles from a Melt g| 79 -- g| 4.3 t| Consequences of Fluid Exsolution from Melts g| 80 -- g| 4.3.1 t| Explosive Volcanism g| 80 -- g| 4.3.2 t| Global Atmosphere and Climate g| 82 -- g| 4.3.3 t| Fumaroles, Hydrothermal Solutions, Ore Deposits, and Geothermal Reservoirs g| 84 -- g| Chapter 5 t| Crystal-Melt Equilibria in Magmatic Systems -- g| 5.1 t| Phase Diagrams g| 87 -- g| 5.1.1 t| Phase Rule g| 87 -- g| 5.2 t| Melting of a Pure Mineral and Polymorphism g| 89 -- g| 5.2.1 t| Volatile-Free Equilibria g| 89 -- g| 5.2.2 t| Melting of a Pure Mineral in the Presence of Volatiles g| 89 -- g| 5.3 t| Phase Relations in Binary Systems g| 90 -- g| 5.3.1 t| Basic Concepts: CaMgSi[subscript 2]O[subscript 6] (Di)-CaAl[subscript 2]Si[subscript 2]O[subscript 8] (An) System at P = 1 atm g| 90 -- g| 5.3.2 t| Mg[subscript 2]SiO[subscript 4]-SiO[subscript 2] System at 1 atm g| 93 -- g| 5.4 t| Crystal-Melt Equilibria in Real Basalt Magmas g| 98 -- g| 5.4.1 t| Makaopuhi Basalt g| 98 -- g| 5.4.2 t| Basalt Magmas at High Pressures and High Water Concentrations g| 99 -- g| 5.5 t| Feldspar-Melt Equilibria g| 100 -- g| 5.5.1 t| KAlSi[subscript 3]O[subscript 8] (Kf)-CaAl[subscript 2]Si[subscript 2]O[subscript 8] (An) Binary System: Limited Solid Solution g| 100 -- g| 5.5.2 t| NaAlSi[subscript 3]O[subscript 8] (Ab)-CaAl[subscript 2]Si[subscript 2]O[subscript 8] (An) Binary Plagioclase System: Complete Solid Solution g| 101 -- g| 5.5.3 t| NaAlSi[subscript 3]O[subscript 8] (Ab)-KAlSi[subscript 3]O[subscript 8] (Kf) Binary Alkali Feldspar System g| 102 -- g| 5.5.4 t| KAlSi[subscript 3]O[subscript 8] (Kf)-NaAlSi[subscript 3]O[subscript 8] (Ab)-CaAl[subscript 2]Si[subscript 2]O[subscript 8] (An) Ternary Feldspar System g| 104 -- g| 5.5.5 t| KAlSi[subscript 3]O[subscript 8] (Kf)-NaAlSi[subscript 3]O[subscript 8] (Ab)-SiO[subscript 2] (silica)-H[subscript 2]O: The Granite System g| 108 -- g| 5.6 t| Crystal-Melt Equilibria Involving Anhydrous Mafic Minerals: Olivine and Pyroxene g| 112 -- g| 5.7 t| Crystal-Melt Equilibria in Hydrous Magma Systems g| 113 -- g| 5.7.1 t| Equilibria in the Granodiorite-Water System g| 113 -- g| 5.7.2 t| Equilibria Involving Melt and Micas and Amphiboles g| 114 -- g| 5.8 t| Geothermometers and Geobarometers g| 117 -- g| 5.8.1 t| Assessing States of Equilibrium in Rocks g| 117 -- g| 5.9 t| A Brief Comment Regarding Subsolidus Reactions in Magmatic Rocks g| 118 -- g| Chapter 6 t| Chemical Dynamics of Melts and Crystals -- g| 6.1 t| Viscosity of Melts g| 122 -- g| 6.2 t| Chemical Diffusion g| 126 -- g| 6.2.1 t| Types of Diffusion g| 126 -- g| 6.2.2 t| Theory and Measurement g| 127 -- g| 6.2.3 t| Factors Governing Diffusivities g| 128 -- g| 6.2.4 t| Average Diffusion Distance g| 129 -- g| 6.2.5 t| Soret Diffusion g| 129 -- g| 6.3 t| Diffusion of Heat g| 130 -- g| 6.3.1 t| Role of Body Shape on Conductive Cooling g| 131 -- g| 6.4 t| Interfacial Energy g| 131 -- g| 6.5 t| Crystallization g| 133 -- g| 6.5.1 t| Why Is It Important to Study Nucleation and Crystallization? g| 133 -- g| 6.5.2 t| Nucleation g| 133 -- g| 6.5.3 t| Crystal Growth g| 135 -- g| 6.5.4 t| Crystal Size in Magmatic Rocks g| 137 -- g| 6.6 t| Secondary Overprinting Processes Modifying Primary Crystal Size and Shape g| 139 -- g| 6.6.1 t| Crystal Dissolution g| 139 -- g| 6.6.2 t| Textural Equilibration: Grain Boundary Modification g| 140 -- g| 6.7 t| Vesiculation and Fragmentation of Magma g| 142 -- g| 6.7.1 t| Nucleation and Growth of Bubbles--Vesiculation g| 142 -- g| 6.7.2 t| Melt Fragmentation and Explosive Volcanism g| 145 -- g| Chapter 7 t| Kinetic Paths and Fabric of Magmatic Rocks -- g| 7.1 t| Fabrics Related to Crystallization Path: Crystallinity and Grain Size g| 151 -- g| 7.1.1 t| Glassy Texture g| 151 -- g| 7.1.2 t| Aphanitic Texture g| 153 -- g| 7.1.3 t| Phaneritic Texture g| 155 -- g| 7.1.4 t| Porphyritic Texture g| 157 -- g| 7.1.5 t| Poikilitic and Ophitic Textures g| 158 -- g| 7.2 t| Fabrics Related to Crystallization Path: Grain Shape g| 158 -- g| 7.3 t| Fabrics Related to Crystallization Path: Inhomogeneous Grains g| 160 -- g| 7.3.1 t| Zoned Crystals g| 160 -- g| 7.3.2 t| Reaction Rims g| 160 -- g| 7.3.3 t| Subsolidus Decomposition and Exsolution in Unstable Minerals g| 161 -- g| 7.4 t| Fabric Related to Textural Equilibration: Secondary Grain-Boundary Modification g| 162 -- g| 7.5 t| A Word of Caution on the Interpretation of Crystalline Textures g| 163 -- g| 7.5.1 t| Magmatic Rock Texture and Order of Crystallization g| 163 -- g| 7.6 t| Fabrics Related to Nonexplosive Exsolution of Volatile Fluids g| 165 -- g| 7.7 t| Volcanicalastic Fabrics Related to Fragmentation of Magma g| 166 -- g| 7.7.1 t| Pyroclastic Processes g| 167 -- g| 7.7.2 t| Autoclastic Processes g| 169 -- g| 7.8 t| Fabrics Related to Consolidation of Volcaniclasts into Solid Rock g| 171 -- g| 7.9 t| Anisotropic Fabrics g| 171 -- g| 7.9.1 t| Descriptive Geometric Aspects g| 171 -- g| 7.9.2 t| Origin g| 175 -- g| 7.10 t| Inclusions g| 181 -- g| Chapter 8 t| Physical and Thermal Dynamics of Bodies of Magma -- g| 8.1 t| Stress and Deformation g| 183 -- g| 8.1.1 t| Concepts of Stress g| 183 -- g| 8.1.2 t| Deformation g| 184 -- g| 8.1.3 t| Ideal Response to Stress g| 185 -- g| 8.2 t| Rheology of Rocks and Magmas g| 186 -- g| 8.2.1 t| Rheology of Rocks g| 187 -- g| 8.2.2 t| Non-Newtonian Rheology of Magma g| 190 -- g| 8.2.3 t| Deformation and Flow of Magma g| 191 -- g| 8.3 t| Density of Magma and Buoyancy g| 194 -- g| 8.3.1 t| Density Determinations g| 194 -- g| 8.3.2 t| Densities of Minerals and Melts g| 195 -- g| 8.3.3 t| Buoyancy g| 196 -- g| 8.4 t| Conductive Heat Transfer g| 197 -- g| 8.4.1 t| Conductive Cooling Models g| 198 -- g| 8.5 t| Advective Heat Transfer g| 199 -- g| 8.6 t| Magma Convection g| 201 -- g| 8.6.1 t| Thermal Convection in a Completely Molten Body of Melt g| 201 -- g| 8.6.2 t| Thermochemical Convection in Crystallizing Magmas g| 203 -- g| 8.6.3 t| Replenishment in Evolving Magma Chambers g| 205 -- g| Chapter 9 t| Magma Ascent and Emplacement: Field Relations of Intrusions -- g| 9.1 t| Movement of Magma in the Earth g| 210 -- g| 9.1.1 t| Neutral Buoyancy and the Crustal Density Filter g| 210 -- g| 9.1.2 t| Magma Overpressure g| 212 -- g| 9.1.3 t| Mechanisms of Magma Ascent g| 213 -- g| 9.2 t| Sheet Intrusions (Dikes) g| 213 -- g| 9.2.1 t| Description and Terminology g| 213 -- g| 9.2.2 t| Some Thermomechanical Concepts Pertaining to Emplacement of Sheet Intrusions g| 216 -- g| 9.2.3 t| Geometry and Orientation of Sheet Intrusions g| 218 -- g| 9.2.4 t| Basalt Diking in Extensional Regimes g| 220 -- g| 9.3 t| Diapirs g| 222 -- g| 9.4 t| Magma Emplacement in the Crust: Providing the Space g| 224 -- g| 9.4.1 t| Some Aspects of Granitic Plutons g| 225 -- g| 9.4.2 t| Emplacement Processes and Factors g| 226 -- g| 9.4.3 t| Intrusion-Host Rock Interface g| 236 -- g| Chapter 10 t| Magma Extrusion: Field Relations of Volcanic Rock Bodies -- g| 10.1 t| Overview of Extrusion: Controls and Factors g| 241 -- g| 10.1.1 t| Moving Magma to the Surface: What Allows Extrusion g| 242 -- g| 10.1.2 t| Two Types of Extrusions: Explosive and Effusive g| 242 -- g| 10.2 t| Effusions of Basaltic Lava g| 245 -- g| 10.2.1 t| Types of Basaltic Lava Flows g| 245 -- g| 10.2.2 t| Columnar Joints g| 249 -- g| 10.2.3 t| Subaerial Lava Accumulations g| 250 -- g| 10.2.4 t| Submarine Basaltic Accumulations g| 252 -- g| 10.3 t| Effusions of Silicic Lava g| 254 -- g| 10.3.1 t| Morphological Characteristics and Growth g| 254 -- g| 10.3.2 t| Internal Fabric g| 256 -- g| 10.4 t| Explosive Eruptions g| 259 --
    505
    8
    0
    g| 10.4.1 t| Explosive Mechanisms: Production of Pyroclasts g| 259 -- g| 10.4.2 t| Pyroclasts in Volcanic Plumes g| 262 -- g| 10.4.3 t| Pyroclast Transport and Deposition g| 262 -- g| 10.4.4 t| Explosive Style g| 267 -- g| 10.4.5 t| Pyroclastic Flows and Deposits: Overview g| 270 -- g| 10.4.6 t| Block-and-Ash Flows g| 271 -- g| 10.4.7 t| Ignimbrite-Forming Ash Flows g| 271 -- g| 10.4.8 t| Calderas g| 275 -- g| 10.4.9 t| Subaqueous Pyroclastic Flows g| 277 -- g| 10.5 t| Other Volcaniclastic Deposits g| 278 -- g| 10.5.1 t| Epiclastic Processes and Deposits g| 278 -- g| 10.5.2 t| Volcanic Debris Flows: Lahars g| 278 -- g| 10.5.3 t| Composite Volcanoes g| 279 -- g| Chapter 11 t| Generation of Magma -- g| 11.1 t| Melting of Solid Rock: Changes in P, T, and X g| 283 -- g| 11.1.1 t| Temperature Increase, +[Delta]T g| 284 -- g| 11.1.2 t| Decompression, -[Delta]P g| 286 -- g| 11.1.3 t| Changes in Water Concentration, +[Delta]X[subscript water] g| 287 -- g| 11.2 t| Mantle Source Rock g| 288 -- g| 11.2.1 t| Mantle-Derived Inclusions g| 289 -- g| 11.2.2 t| Metasomatized and Enriched Mantle Rock g| 291 -- g| 11.3 t| Generation of Magma in Mantle Peridotite g| 295 -- g| 11.3.1 t| Equilibrium (Batch) Partial Melting of Lherzolite g| 295 -- g| 11.3.2 t| Fractional Partial Melting of Lherzolite g| 297 -- g| 11.3.3 t| Factors Controlling Partial Melt Composition g| 297 -- g| 11.3.4 t| Modeling Partial Melting Using Trace Elements g| 299 -- g| 11.3.5 t| Characteristics of Primary Magma g| 300 -- g| 11.4 t| Magma Generation in Subarc Mantle Wedge g| 300 -- g| 11.4.1 t| Dehydration of Subducting Oceanic Crust g| 301 -- g| 11.4.2 t| Magma Generation in the Mantle Wedge g| 303 -- g| 11.4.3 t| Partial Melting of Subducted Basaltic Oceanic Crust: Adakite g| 305 -- g| 11.5 t| Generation of Alkaline Magmas in Metasomatically Enriched Mantle Peridotite g| 306 -- g| 11.5.1 t| Metasomatized Mantle Connection g| 307 -- g| 11.6 t| Magma Generation in the Continental Crust g| 308 -- g| 11.6.1 t| Partial Melting of Continental Source Rocks g| 309 -- g| 11.6.2 t| "Alphabet" Granitic Magmas: Contrasting Sources g| 311 -- g| 11.6.3 t| Crystalline Residues g| 312 -- g| 11.6.4 t| Melt Segregation g| 313 -- g| 11.6.5 t| Felsic Magma Generation and the Mantle Connection g| 313 -- g| Chapter 12 t| Differentiation of Magmas -- g| 12.1 t| Using Variation Diagrams to Characterize Differentiation Processes g| 317 -- g| 12.2 t| Closed-System Magmatic Differentiation g| 318 -- g| 12.2.1 t| Crystal-Melt Fractionation g| 318 -- g| 12.2.2 t| Physical Separation of Immiscible Melts g| 322 -- g| 12.2.3 t| Fluid-Melt Separation: Pegmatites g| 324 -- g| 12.3 t| Open-System Differentiation: Hybrid Magmas g| 325 -- g| 12.3.1 t| Magma Mixing g| 325 -- g| 12.3.2 t| Assimilation g| 328 -- g| 12.4 t| Differentiation in Basaltic Intrusions g| 329 -- g| 12.4.1 t| Palisades Sill g| 329 -- g| 12.4.2 t| Layered Intrusions g| 331 -- g| 12.4.3 t| Oceanic-Ridge Magma Chambers g| 337 -- g| 12.5 t| Origin of the Calc-Alkaline Differentiation Trend g| 338 -- g| 12.5.1 t| Tonga--Kermadec--New Zealand Arc g| 339 -- g| 12.5.2 t| Factors Controlling Development of the Calc-Alkaline Trend g| 339 -- g| Chapter 13 t| Petrotectonic Associations -- g| 13.1 t| Oceanic Spreading Ridges and Related Basaltic Rocks g| 349 -- g| 13.1.1 t| Mid-Ocean Ridge Basalt (MORB) g| 350 -- g| 13.1.2 t| Iceland g| 353 -- g| 13.1.3 t| Mantle Reservoirs g| 354 -- g| 13.2 t| Mantle Plumes and Oceanic Island Volcanic Rocks g| 354 -- g| 13.2.1 t| Character of Volcanic Rocks g| 356 -- g| 13.2.2 t| Hawaiian Islands: Tholeiitic and Alkaline Associations g| 359 -- g| 13.2.3 t| Highly Alkaline Rocks on Other Oceanic Islands g| 362 -- g| 13.3 t| Plume Heads and Basalt Flood Plateau Lavas g| 364 -- g| 13.3.1 t| Oceanic Plateaus g| 364 -- g| 13.3.2 t| Continental Flood Basalt Plateaus g| 365 -- g| 13.3.3 t| Continental Breakup g| 369 -- g| 13.4 t| Arc Magmatism: Overview g| 370 -- g| 13.5 t| Oceanic Island Arcs g| 371 -- g| 13.5.1 t| Rock Associations g| 372 -- g| 13.5.2 t| Magma Evolution g| 374 -- g| 13.5.3 t| Back-Arc Basins g| 375 -- g| 13.6 t| Ophiolite g| 376 -- g| 13.6.1 t| Characteristics g| 376 -- g| 13.6.2 t| Origin and Emplacement g| 377 -- g| 13.7 t| Calc-Alkaline Continental Margin Magmatic Arcs g| 377 -- g| 13.7.1 t| Volcanic Arcs on Continental Margins g| 378 -- g| 13.7.2 t| Plutonic Arcs on Continental Margins: Granitic Batholiths g| 382 -- g| 13.8 t| Granites in Continent-Continent Collision Zones g| 386 -- g| 13.9 t| Anorogenic A-Type Felsic Rocks g| 387 -- g| 13.9.1 t| Characteristics g| 388 -- g| 13.9.2 t| Petrogenesis g| 389 -- g| 13.9.3 t| Anorogenic Ring Complexes in Nigeria and Niger g| 390 -- g| 13.10 t| Granites and Granites g| 390 -- g| 13.11 t| Continental Rift Associations: Bimodal and Alkaline Rocks g| 392 -- g| 13.11.1 t| Transitions from Continental Arc to Rift Associations in Western North America g| 394 -- g| 13.11.2 t| Magmatism in the East African Rift System g| 395 -- g| 13.12 t| Alkaline Orphans, Mostly in Stable Cratons g| 397 -- g| 13.12.1 t| Lamprophyres g| 398 -- g| 13.12.2 t| Lamproite, Orangeite, and Kimberlite Clans g| 398.
    596
      
      
    a| 5
    650
      
    0
    a| Igneous rocks
    700
    1
      
    a| Christiansen, Eric H.
    999
      
      
    a| QE461 .B54 2001 w| LC i| X004478903 l| STACKS m| SCI-ENG t| BOOK
▾See more
▴See less

Availability

Google Preview

Google Books Preview
Library Location Map Availability Call Number
Brown Science and Engineering Stacks N/A Available