Item Details

Introduction to DWDM Technology: Data in a Rainbow

Stamatios V. Kartalopoulos
Format
Book
Published
Bellingham, Wash. : aSPIE Optical Engineering Press ; New York : IEEE Press, c2000.
Language
English
ISBN
0780353994 (IEEE ISBN), 0819436208 (SPIE ISBN)
Contents
  • Part I Fundamentals of Light
  • Chapter 1 Nature of Light
  • 1.2 Increasing the Transportable Bandwidth of a Fiber
  • 1.3 What Is DWDM?
  • 1.4 What Is OFDM?
  • 1.5 Opaque versus Transparent WDM Systems
  • 1.6 DWDM Devices
  • 1.7 Fundamentals of Light
  • 1.7.1 Wave Nature of Light
  • 1.7.2 Particle Nature of Light
  • 1.8 Photometric Terms: Flux, Illuminance, and Luminance
  • Chapter 2 Interaction of Light with Matter
  • 2.2 Transparent versus Opaque Matter
  • 2.3 Properties of Optically Transparent Matter
  • 2.3.1 Reflection and Refraction Index of Refraction
  • 2.3.2 Snell's Law
  • 2.3.3 Critical Angle
  • 2.3.4 Optical Prisms
  • 2.3.5 Diffraction
  • 2.3.6 Diffraction at Infinity
  • 2.3.7 Diffraction Gratings
  • 2.3.8 Principle of Huygens-Fresnel
  • 2.3.9 Interference of Light
  • 2.3.10 Antireflection Coatings
  • 2.3.11 Holography
  • 2.3.12 Polarization
  • 2.3.13 Polarization Examples
  • 2.3.14 Polarization by Reflection and Refraction
  • 2.3.15 Extinction Ratio
  • 2.3.16 Polarization Mode Shift: The Faraday Effect
  • 2.3.17 Phase Shift
  • 2.3.18 Isotropy and Anisotropy
  • 2.3.18 Birefringence
  • 2.3.19 Material Dispersion
  • 2.3.20 Nonlinear Phenomena
  • 2.3.21 Homogeneity and Heterogeneity
  • 2.3.22 Effects of Impurities in Matter
  • 2.3.23 Effects of Microcracks
  • 2.3.24 Effects of Mechanical Pressure
  • 2.3.25 Effects of Temperature Variation
  • Part II Optical Components
  • Chapter 3 Optical Waveguide the Fiber
  • 3.2 Anatomy of a Fiber Cable
  • 3.2.1 How is Fiber Made?
  • 3.2.2 How is the Preform Made?
  • 3.3 Index of Refraction Profiles
  • 3.4 Fiber Modes
  • 3.4.1 Multimode Graded Index
  • 3.4.2 Single Mode
  • 3.5 Propagation of Light
  • 3.6 Critical Cone or Acceptance Cone
  • 3.7 Exit Cone
  • 3.8 Phase Velocity
  • 3.9 Group Velocity
  • 3.10 Modal Dispersion
  • 3.10.1 Intermodal Delay Difference
  • 3.10.2 Maximum Bit Rate
  • 3.10.3 Mode Mixing
  • 3.11 Reduction of Modal Dispersion
  • 3.12 Chromatic Dispersion
  • 3.12.1 Material Dispersion
  • 3.12.2 Wavelength Dispersion
  • 3.12.3 Chromatic Dispersion: Travel Time Variation
  • 3.14.4 Chromatic Dispersion: Pulse Spread
  • 3.13 Dispersion-Shifted and Dispersion-Flattened Fibers
  • 3.14 Chromatic Dispersion Limits: ITU-T
  • 3.15 Single-Mode Chromatic Dispersion Calculations
  • 3.16 Chromatic Dispersion-Compensation
  • 3.17 Polarization Mode Dispersion
  • 3.18 Fiber Attenuation or Loss
  • 3.18.1 Decibel
  • 3.19 Fiber Spectrum Utilization
  • 3.20 Fiber Birefringence and Polarization
  • 3.21 Nonlinear Phenomena
  • 3.21.1 Stimulated Raman Scattering
  • 3.21.2 Stimulated Brillouin Scattering
  • 3.21.3 Four-Wave Mixing
  • 3.21.4 Temporal FWM, Near End and Far End
  • 3.22 Spectral Broadening
  • 3.23 Self-Phase Modulation
  • 3.24 Self-Modulation or Modulation Instability
  • 3.25 Impact of FWM on DWDM Transmission Systems
  • 3.26 Countermeasures to Reduce FWM
  • 3.27 Solitons
  • 3.27.1 A Qualitative Interpretation of Solitons
  • 3.28 Fiber Connectors
  • Chapter 4 Optical Spectral Filters and Gratings
  • 4.2 Fabry-Perot Interferometer
  • 4.2.1 Fabry-Perot Resonator
  • 4.2.2 Finesse
  • 4.2.3 Spectral Width, Line Width, and Line Spacing
  • 4.2.4 Fabry-Perot Filter
  • 4.3 Bragg Grating
  • 4.3.1 Bragg Reflector
  • 4.3.1 Bragg Condition
  • 4.4 Fiber Bragg Gratings
  • 4.5 Tunable Bragg Gratings
  • 4.6 Dielectric Thin Film
  • 4.7 Polarizing Beam Splitters
  • 4.8 Tunable Optical Filters
  • 4.9 Acousto-Optic Tunable Filters
  • 4.10 Mach-Zehnder Filter
  • 4.10.1 Tunability of the Mach-Zehnder Filter
  • 4.11 Absorption Filters
  • 4.12 Birefringence Filters
  • 4.13 Hybrid Filters
  • 4.14 Tunable Filters Comparison
  • 4.15 Diffraction Gratings
  • Chapter 5 Optical Demultiplexers
  • 5.2 Prisms
  • 5.3 Diffraction Gratings
  • 5.4 Arrayed Waveguide Grating
  • 5.5 Mach-Zehnders Interferometer
  • 5.6 Spectral Filters
  • 5.7 Acousto-Optic Filter Plus Polarizing Beam Splitter
  • 5.8 Optical Multiplexers
  • Chapter 6 Light Sources
  • 6.2 Light-Emitting Diodes
  • 6.2.1 Switching Speed and Output Power
  • 6.2.2 Output Optical Spectrum
  • 6.2.3 Input-Output Response
  • 6.2.4 Modulation Response
  • 6.3 Lasers
  • 6.3.1 Ruby Laser
  • 6.3.2 Semiconductor Lasers
  • 6.4 Monolithic Fabry-Perot Lasers
  • 6.5 Monolithic Bragg Lasers
  • 6.6 Distributed Feedback Lasers
  • 6.7 Semiconductor Quantum Well Lasers
  • 6.8 VCSEL Lasers
  • 6.9 Monolithic Tunable Lasers
  • 6.9.1 Single-Frequency Lasers
  • 6.9.2 Multifrequency Lasers
  • 6.10 Optical Comb Generators
  • 6.11 Chirped-Pulse Laser Sources
  • 6.12 Multifrequency Cavity Lasers
  • 6.13 Monolithic DFB Arrays
  • 6.14 Modulators
  • 6.15 Laser Modules
  • Chapter 7 Photodetectors
  • 7.2 Photodetector Characteristics
  • 7.3 PIN Photodiode
  • 7.4 APD Photodiode
  • Chapter 8 Light Amplifiers
  • 8.2 Regenerators
  • 8.3 Optical Amplifiers
  • 8.4 Semiconductor Optical Amplifiers
  • 8.5 Erbium-Doped Fiber Amplifiers
  • 8.6 Praseodymium-Doped Fiber Amplifiers
  • 8.7 Stimulated Raman and Stimulated Brillouin Scattering Amplifiers
  • 8.8 Classification of Optical Fiber Amplifiers
  • 8.8.1 Power Amplifiers
  • 8.8.2 Pre-Amplifiers
  • 8.8.3 Line Amplifiers
  • 8.8.4 Amplifier Standards
  • 8.9 Wavelength Converters
  • 8.9.1 Cross-Gain Modulation
  • 8.9.2 Four-Wave Mixing
  • 8.9.3 Optical Frequency Shifter
  • Chapter 9 Other Optical Components
  • 9.2 Optical Phase-Locked Loops
  • 9.3 Optical Directional Couplers
  • 9.4 Ring Resonators
  • 9.5 Optical Equalizers
  • 9.6 Optical Isolators
  • 9.7 Polarizers, Rotators, and Circulators
  • Chapter 10 Optical Cross-Connects
  • 10.2 Optical Cross-Connect Model
  • 10.3 Free-Space Optical Switching
  • 10.4 Solid-State Cross-Connects
  • 10.5 Micro-Electro-Mechanical Switches: Reflector Type
  • 10.6 Electro-Mechanical Switches: Mirror Array
  • 10.7 Switching Speeds
  • Chapter 11 Optical Add-Drop Multiplexers
  • 11.2 OADM Function
  • 11.3 Optical Add-Drop Multiplexers
  • Part III Coding Optical Information
  • Chapter 12 Digital Transmission and Coding Techniques
  • 12.2 Return to Zero and Non-Return to Zero
  • 12.3 Unipolar and Bipolar Signals
  • 12.4 4B/5B, 8B/10B Coding
  • 12.5 ASK Format
  • 12.6 PSK Format
  • 12.7 FSK Format
  • Chapter 13 Decoding Optical Information
  • 13.2 ASK Demodulators
  • 13.3 PSK and FSK Demodulators
  • Part IV Dense Wavelength Division Multiplexing
  • Chapter 14 DWDM Systems
  • 14.2 DWDM Network Topologies
  • 14.3 DWDM Applicability
  • Chapter 15 Engineering DWDM Systems
  • 15.2 ITU-T Nominal Center Frequencies
  • 15.3 Channel Capacity, Width, and Spacing
  • 15.4 Channel Bit Rate and Modulation
  • 15.5 Wavelength Management
  • 15.6 Multichannel Frequency Stabilization
  • 15.7 Channel Performance
  • 15.8 Channel Dispersion
  • 15.9 Power Launched
  • 15.10 Optical Amplification
  • 15.11 Fiber Type as the Transmission Medium
  • 15.12 Optical Power Budget
  • 15.13 Type of Services Supported
  • 15.14 Aggregate Bandwidth Management
  • 15.15 Protocol Used to Transport Supported Services
  • 15.16 Protocol for Network Management
  • 15.17 Network Reliability
  • 15.18 Network Protection and Survivability Strategies
  • 15.19 Network Scalability and Flexibility
  • 15.20 Wavelength Management
  • 15.21 Interoperability
  • 15.22 Single-Mode Power Loss Calculations: An Example
  • 15.23 Channel Calculations in a Network: Three Examples
  • Chapter 16 DWDM Topologies
  • 16.2 Point-to-Point Topology
  • 16.3 Ring-Configured Mesh and Star Networks
  • 16.4 A DWDM Hub
  • 16.4.1 Transmit Direction
  • 16.4.2 Receive Direction
  • 16.5 Faults
  • Part V DWDM Current Issues and Research
  • Chapter 17 State of the Art
  • 17.2 Currenth Issues
  • 17.2.1 Lasers and Receivers
  • 17.2.2 Optical Cross-Connect
  • 17.2.3 Optical Add-Drop Multiplexers
  • 17.2.4 Optical Memories and Variable Delay Lines
  • 17.2.5 Non-Intrusive Optical Monitoring
  • 17.2.6 DWDM System Dynamic Reconfigurability
  • 17.2.7 Optical Backplanes
  • 17.2.8 Standards
  • 17.2.9 Network Issues
  • 17.2.10 Ultra-High-Speeds at Longer Spans
  • 17.2.11 Opaque Systems
  • 17.3 Ultrafast Pattern Recognition
  • 17.3.1 Example: SONET/SDH
  • 17.3.2 Example: ATM
  • 17.3.3 Example: Internet Protocol
  • 17.4 Current Research: Wavelength Bus.
Description
xxii, 252 p. : ill. (some col.) ; 24 cm.
Notes
  • "IEEE Communications Society, sponsor."
  • Includes bibliographical references and index.
Technical Details
  • Access in Virgo Classic

  • LEADER 09805pam a2200373 a 4500
    001 u3489523
    003 SIRSI
    005 19991215103420.0
    008 990929s2000 waua b 001 0 eng
    010
      
      
    a| 99049676
    020
      
      
    a| 0780353994 (IEEE ISBN)
    020
      
      
    a| 0819436208 (SPIE ISBN)
    035
      
      
    a| (Sirsi) i0780353994
    035
      
      
    a| (OCoLC)42580547
    040
      
      
    a| DLC c| DLC d| NhCcYBP d| MvI
    042
      
      
    a| pcc
    050
    0
    0
    a| TK5103.59 b| K36 2000
    082
    0
    0
    a| 621.382/7 2| 21
    090
      
      
    a| SCIENG/TK5103.59 b| K36 2000
    100
    1
      
    a| Kartalopoulos, Stamatios V.
    245
    1
    0
    a| Introduction to DWDM technology : b| data in a rainbow / c| Stamatios V. Kartalopoulos.
    260
      
      
    a| Bellingham, Wash. : b| aSPIE Optical Engineering Press ; a| New York : b| IEEE Press, c| c2000.
    300
      
      
    a| xxii, 252 p. : b| ill. (some col.) ; c| 24 cm.
    500
      
      
    a| "IEEE Communications Society, sponsor."
    504
      
      
    a| Includes bibliographical references and index.
    505
    0
    0
    g| Part I t| Fundamentals of Light -- g| Chapter 1 t| Nature of Light -- g| 1.2 t| Increasing the Transportable Bandwidth of a Fiber -- g| 1.3 t| What Is DWDM? -- g| 1.4 t| What Is OFDM? -- g| 1.5 t| Opaque versus Transparent WDM Systems -- g| 1.6 t| DWDM Devices -- g| 1.7 t| Fundamentals of Light -- g| 1.7.1 t| Wave Nature of Light -- g| 1.7.2 t| Particle Nature of Light -- g| 1.8 t| Photometric Terms: Flux, Illuminance, and Luminance -- g| Chapter 2 t| Interaction of Light with Matter -- g| 2.2 t| Transparent versus Opaque Matter -- g| 2.3 t| Properties of Optically Transparent Matter -- g| 2.3.1 t| Reflection and Refraction Index of Refraction -- g| 2.3.2 t| Snell's Law -- g| 2.3.3 t| Critical Angle -- g| 2.3.4 t| Optical Prisms -- g| 2.3.5 t| Diffraction -- g| 2.3.6 t| Diffraction at Infinity -- g| 2.3.7 t| Diffraction Gratings -- g| 2.3.8 t| Principle of Huygens-Fresnel -- g| 2.3.9 t| Interference of Light -- g| 2.3.10 t| Antireflection Coatings -- g| 2.3.11 t| Holography -- g| 2.3.12 t| Polarization -- g| 2.3.13 t| Polarization Examples -- g| 2.3.14 t| Polarization by Reflection and Refraction -- g| 2.3.15 t| Extinction Ratio -- g| 2.3.16 t| Polarization Mode Shift: The Faraday Effect -- g| 2.3.17 t| Phase Shift -- g| 2.3.18 t| Isotropy and Anisotropy -- g| 2.3.18 t| Birefringence -- g| 2.3.19 t| Material Dispersion -- g| 2.3.20 t| Nonlinear Phenomena -- g| 2.3.21 t| Homogeneity and Heterogeneity -- g| 2.3.22 t| Effects of Impurities in Matter -- g| 2.3.23 t| Effects of Microcracks -- g| 2.3.24 t| Effects of Mechanical Pressure -- g| 2.3.25 t| Effects of Temperature Variation -- g| Part II t| Optical Components -- g| Chapter 3 t| Optical Waveguide the Fiber -- g| 3.2 t| Anatomy of a Fiber Cable -- g| 3.2.1 t| How is Fiber Made? -- g| 3.2.2 t| How is the Preform Made? -- g| 3.3 t| Index of Refraction Profiles -- g| 3.4 t| Fiber Modes -- g| 3.4.1 t| Multimode Graded Index -- g| 3.4.2 t| Single Mode -- g| 3.5 t| Propagation of Light -- g| 3.6 t| Critical Cone or Acceptance Cone -- g| 3.7 t| Exit Cone -- g| 3.8 t| Phase Velocity -- g| 3.9 t| Group Velocity -- g| 3.10 t| Modal Dispersion -- g| 3.10.1 t| Intermodal Delay Difference -- g| 3.10.2 t| Maximum Bit Rate -- g| 3.10.3 t| Mode Mixing -- g| 3.11 t| Reduction of Modal Dispersion -- g| 3.12 t| Chromatic Dispersion -- g| 3.12.1 t| Material Dispersion -- g| 3.12.2 t| Wavelength Dispersion -- g| 3.12.3 t| Chromatic Dispersion: Travel Time Variation -- g| 3.14.4 t| Chromatic Dispersion: Pulse Spread -- g| 3.13 t| Dispersion-Shifted and Dispersion-Flattened Fibers -- g| 3.14 t| Chromatic Dispersion Limits: ITU-T -- g| 3.15 t| Single-Mode Chromatic Dispersion Calculations -- g| 3.16 t| Chromatic Dispersion-Compensation -- g| 3.17 t| Polarization Mode Dispersion -- g| 3.18 t| Fiber Attenuation or Loss -- g| 3.18.1 t| Decibel -- g| 3.19 t| Fiber Spectrum Utilization -- g| 3.20 t| Fiber Birefringence and Polarization -- g| 3.21 t| Nonlinear Phenomena -- g| 3.21.1 t| Stimulated Raman Scattering -- g| 3.21.2 t| Stimulated Brillouin Scattering -- g| 3.21.3 t| Four-Wave Mixing -- g| 3.21.4 t| Temporal FWM, Near End and Far End -- g| 3.22 t| Spectral Broadening -- g| 3.23 t| Self-Phase Modulation -- g| 3.24 t| Self-Modulation or Modulation Instability -- g| 3.25 t| Impact of FWM on DWDM Transmission Systems -- g| 3.26 t| Countermeasures to Reduce FWM -- g| 3.27 t| Solitons -- g| 3.27.1 t| A Qualitative Interpretation of Solitons -- g| 3.28 t| Fiber Connectors -- g| Chapter 4 t| Optical Spectral Filters and Gratings -- g| 4.2 t| Fabry-Perot Interferometer -- g| 4.2.1 t| Fabry-Perot Resonator -- g| 4.2.2 t| Finesse -- g| 4.2.3 t| Spectral Width, Line Width, and Line Spacing -- g| 4.2.4 t| Fabry-Perot Filter -- g| 4.3 t| Bragg Grating -- g| 4.3.1 t| Bragg Reflector -- g| 4.3.1 t| Bragg Condition -- g| 4.4 t| Fiber Bragg Gratings -- g| 4.5 t| Tunable Bragg Gratings -- g| 4.6 t| Dielectric Thin Film -- g| 4.7 t| Polarizing Beam Splitters -- g| 4.8 t| Tunable Optical Filters -- g| 4.9 t| Acousto-Optic Tunable Filters -- g| 4.10 t| Mach-Zehnder Filter -- g| 4.10.1 t| Tunability of the Mach-Zehnder Filter -- g| 4.11 t| Absorption Filters -- g| 4.12 t| Birefringence Filters -- g| 4.13 t| Hybrid Filters -- g| 4.14 t| Tunable Filters Comparison -- g| 4.15 t| Diffraction Gratings -- g| Chapter 5 t| Optical Demultiplexers -- g| 5.2 t| Prisms -- g| 5.3 t| Diffraction Gratings -- g| 5.4 t| Arrayed Waveguide Grating -- g| 5.5 t| Mach-Zehnders Interferometer -- g| 5.6 t| Spectral Filters -- g| 5.7 t| Acousto-Optic Filter Plus Polarizing Beam Splitter -- g| 5.8 t| Optical Multiplexers -- g| Chapter 6 t| Light Sources -- g| 6.2 t| Light-Emitting Diodes -- g| 6.2.1 t| Switching Speed and Output Power -- g| 6.2.2 t| Output Optical Spectrum -- g| 6.2.3 t| Input-Output Response -- g| 6.2.4 t| Modulation Response -- g| 6.3 t| Lasers -- g| 6.3.1 t| Ruby Laser -- g| 6.3.2 t| Semiconductor Lasers -- g| 6.4 t| Monolithic Fabry-Perot Lasers -- g| 6.5 t| Monolithic Bragg Lasers -- g| 6.6 t| Distributed Feedback Lasers -- g| 6.7 t| Semiconductor Quantum Well Lasers -- g| 6.8 t| VCSEL Lasers -- g| 6.9 t| Monolithic Tunable Lasers -- g| 6.9.1 t| Single-Frequency Lasers -- g| 6.9.2 t| Multifrequency Lasers -- g| 6.10 t| Optical Comb Generators -- g| 6.11 t| Chirped-Pulse Laser Sources -- g| 6.12 t| Multifrequency Cavity Lasers -- g| 6.13 t| Monolithic DFB Arrays -- g| 6.14 t| Modulators -- g| 6.15 t| Laser Modules -- g| Chapter 7 t| Photodetectors -- g| 7.2 t| Photodetector Characteristics -- g| 7.3 t| PIN Photodiode -- g| 7.4 t| APD Photodiode -- g| Chapter 8 t| Light Amplifiers -- g| 8.2 t| Regenerators -- g| 8.3 t| Optical Amplifiers -- g| 8.4 t| Semiconductor Optical Amplifiers -- g| 8.5 t| Erbium-Doped Fiber Amplifiers -- g| 8.6 t| Praseodymium-Doped Fiber Amplifiers -- g| 8.7 t| Stimulated Raman and Stimulated Brillouin Scattering Amplifiers -- g| 8.8 t| Classification of Optical Fiber Amplifiers -- g| 8.8.1 t| Power Amplifiers -- g| 8.8.2 t| Pre-Amplifiers -- g| 8.8.3 t| Line Amplifiers -- g| 8.8.4 t| Amplifier Standards -- g| 8.9 t| Wavelength Converters -- g| 8.9.1 t| Cross-Gain Modulation -- g| 8.9.2 t| Four-Wave Mixing -- g| 8.9.3 t| Optical Frequency Shifter -- g| Chapter 9 t| Other Optical Components -- g| 9.2 t| Optical Phase-Locked Loops -- g| 9.3 t| Optical Directional Couplers -- g| 9.4 t| Ring Resonators -- g| 9.5 t| Optical Equalizers -- g| 9.6 t| Optical Isolators -- g| 9.7 t| Polarizers, Rotators, and Circulators -- g| Chapter 10 t| Optical Cross-Connects -- g| 10.2 t| Optical Cross-Connect Model -- g| 10.3 t| Free-Space Optical Switching -- g| 10.4 t| Solid-State Cross-Connects -- g| 10.5 t| Micro-Electro-Mechanical Switches: Reflector Type -- g| 10.6 t| Electro-Mechanical Switches: Mirror Array -- g| 10.7 t| Switching Speeds -- g| Chapter 11 t| Optical Add-Drop Multiplexers -- g| 11.2 t| OADM Function -- g| 11.3 t| Optical Add-Drop Multiplexers -- g| Part III t| Coding Optical Information -- g| Chapter 12 t| Digital Transmission and Coding Techniques -- g| 12.2 t| Return to Zero and Non-Return to Zero -- g| 12.3 t| Unipolar and Bipolar Signals -- g| 12.4 t| 4B/5B, 8B/10B Coding -- g| 12.5 t| ASK Format -- g| 12.6 t| PSK Format -- g| 12.7 t| FSK Format -- g| Chapter 13 t| Decoding Optical Information -- g| 13.2 t| ASK Demodulators -- g| 13.3 t| PSK and FSK Demodulators -- g| Part IV t| Dense Wavelength Division Multiplexing -- g| Chapter 14 t| DWDM Systems -- g| 14.2 t| DWDM Network Topologies -- g| 14.3 t| DWDM Applicability -- g| Chapter 15 t| Engineering DWDM Systems -- g| 15.2 t| ITU-T Nominal Center Frequencies -- g| 15.3 t| Channel Capacity, Width, and Spacing -- g| 15.4 t| Channel Bit Rate and Modulation -- g| 15.5 t| Wavelength Management -- g| 15.6 t| Multichannel Frequency Stabilization -- g| 15.7 t| Channel Performance -- g| 15.8 t| Channel Dispersion -- g| 15.9 t| Power Launched -- g| 15.10 t| Optical Amplification -- g| 15.11 t| Fiber Type as the Transmission Medium -- g| 15.12 t| Optical Power Budget -- g| 15.13 t| Type of Services Supported -- g| 15.14 t| Aggregate Bandwidth Management -- g| 15.15 t| Protocol Used to Transport Supported Services -- g| 15.16 t| Protocol for Network Management -- g| 15.17 t| Network Reliability -- g| 15.18 t| Network Protection and Survivability Strategies -- g| 15.19 t| Network Scalability and Flexibility -- g| 15.20 t| Wavelength Management -- g| 15.21 t| Interoperability -- g| 15.22 t| Single-Mode Power Loss Calculations: An Example -- g| 15.23 t| Channel Calculations in a Network: Three Examples -- g| Chapter 16 t| DWDM Topologies -- g| 16.2 t| Point-to-Point Topology -- g| 16.3 t| Ring-Configured Mesh and Star Networks -- g| 16.4 t| A DWDM Hub -- g| 16.4.1 t| Transmit Direction -- g| 16.4.2 t| Receive Direction -- g| 16.5 t| Faults -- g| Part V t| DWDM Current Issues and Research -- g| Chapter 17 t| State of the Art -- g| 17.2 t| Currenth Issues -- g| 17.2.1 t| Lasers and Receivers -- g| 17.2.2 t| Optical Cross-Connect -- g| 17.2.3 t| Optical Add-Drop Multiplexers -- g| 17.2.4 t| Optical Memories and Variable Delay Lines -- g| 17.2.5 t| Non-Intrusive Optical Monitoring -- g| 17.2.6 t| DWDM System Dynamic Reconfigurability -- g| 17.2.7 t| Optical Backplanes -- g| 17.2.8 t| Standards -- g| 17.2.9 t| Network Issues -- g| 17.2.10 t| Ultra-High-Speeds at Longer Spans -- g| 17.2.11 t| Opaque Systems -- g| 17.3 t| Ultrafast Pattern Recognition -- g| 17.3.1 t| Example: SONET/SDH -- g| 17.3.2 t| Example: ATM -- g| 17.3.3 t| Example: Internet Protocol -- g| 17.4 t| Current Research: Wavelength Bus.
    596
      
      
    a| 5
    650
      
    0
    a| Optical communications.
    650
      
    0
    a| Multiplexing.
    650
      
    0
    a| Fiber optics.
    710
    2
      
    a| IEEE Communications Society.
    999
      
      
    a| TK5103.59 K36 2000 w| LC i| X004345483 l| STACKS m| SCI-ENG t| BOOK

Availability

Google Preview

Library Location Map Availability Call Number
Brown Science and Engineering Stacks N/A Available