Item Details

Network and Discrete Location [electronic resource]: Models, Algorithms, and Applications

Daskin, Mark S
Format
EBook; Book; Online
Published
Hoboken : Wiley, 2013.
Edition
2nd ed
Language
English
Related Title
Virtual Library of Virginia EBL DDA purchased title
ISBN
9781118536964, 1118536967
Summary
This Second Edition remains the only hands-on guide to using and developing facility location models. It offers a practice-oriented introduction to model-building methods and solution algorithms complete with software for solving classical problems of realistic size and end-of-chapter exercises to enhance reader understanding. The book introduces readers to the key classical location problems (covering, center, median, and fixed charge); discusses real-world extensions of the basic models used in locating; outlines a host of methodological tools for solving location models; and much more.
Contents
  • Network and Discrete Location: Models, Algorithms, and Applications; Contents; Preface to the First and Second Editions; Acknowledgments; 1. Introduction to Location Theory and Models; 1.1 Introduction; 1.2 Key Questions Addressed by Location Models; 1.3 Example Problem Descriptions; 1.3.1 Ambulance Location; 1.3.2 Siting Landfills for Hazardous Wastes; 1.3.3 Summary; 1.4 Key Dimensions of Location Problems and Models; 1.4.1 Planar Versus Network Versus Discrete Location Models; 1.4.2 Tree Problems Versus General Graph Problems; 1.4.3 Distance Metrics; 1.4.4 Number of Facilities to Locate.
  • 1.4.5 Static Versus Dynamic Location Problems1.4.6 Deterministic Versus Probabilistic Models; 1.4.7 Single- Versus Multiple-Product Models; 1.4.8 Private Versus Public Sector Problems; 1.4.9 Single- Versus Multiple-Objective Problems and Models; 1.4.10 Elastic Versus Inelastic Demand; 1.4.11 Capacitated Versus Uncapacitated Facilities; 1.4.12 Nearest Facility Versus General Demand Allocation Models; 1.4.13 Hierarchical Versus Single-Level Models; 1.4.14 Desirable Versus Undesirable Facilities; 1.5 ATaxonomy of Location Models; 1.5.1 Typology of Location Models; 1.5.2 A Simple Analytic Model.
  • 1.6 SummaryExercises; 2. Review of Linear Programming; 2.1 Introduction; 2.2 The Canonical Form of a Linear Programming Problem; 2.3 Constructing the Dual of an LP Problem; 2.4 Complementary Slackness and the Relationships Between the Primal and the Dual Linear Programming Problems; 2.5 Solving a Linear Programming Problem in Excel; 2.6 The Transportation Problem; 2.7 The Shortest Path Problem; 2.7.1 The Shortest Path Problem in Excel; 2.7.2 The Shortest Path Problem in AMPL; 2.8 The Out-of-Kilter Flow Algorithm; 2.9 Integer Programming Problems; 2.10 Summary; Exercises.
  • 3. An Overview of Complexity Analysis3.1 Introduction; 3.2 Basic Concepts and Notation; 3.3 Example Computation of an Algorithm's Complexity; 3.4 The Classes P and NP (and NP-Hard and NP-Complete); 3.5 Summary; Exercises; 4. Covering Problems; 4.1 Introduction and the Notion of Coverage; 4.2 The Set Covering Model; 4.3 Applications of the Set Covering Model; 4.4 Variants of the Set Covering Location Model; 4.5 The Maximum Covering Location Model; 4.5.1 The Greedy Adding Algorithm: A Heuristic Algorithm for Solving the Maximum Covering Location Model.
  • 4.5.2 Lagrangian Relaxation: An Optimization-Based Heuristic Algorithm for Solving the Maximum Covering Location Model4.5.3 Other Solution Approaches and Example Results; 4.6 An Interesting Model Property or It Ain't Necessarily So; 4.7 The Maximum Expected Covering Location Model; 4.8 Summary; Exercises; 5. Center Problems; 5.1 Introduction; 5.2 Vertex P-Center Formulation; 5.3 The Absolute 1- and 2-Center Problems on a Tree; 5.3.1 Absolute 1-Center on an Unweighted Tree; 5.3.2 Absolute 2-Centers on an Unweighted Tree; 5.3.3 Absolute 1-Center on a Weighted Tree.
Description
1 online resource (536 pages)
Notes
5.4 The Unweighted Vertex P-Center Problem on a General Graph.
Logo for Copyright Not EvaluatedCopyright Not Evaluated
Technical Details

  • LEADER 05050cam a2200481Mi 4500
    001 ocn852757497
    003 OCoLC
    005 20141008065229.6
    006 m o d
    007 cr |n|||||||||
    008 130713s2013 xx o 000 0 eng d
    040
      
      
    a| EBLCP b| eng e| pn c| EBLCP d| OCLCQ
    020
      
      
    a| 9781118536964
    020
      
      
    a| 1118536967
    029
    1
      
    a| AU@ b| 000052913900
    035
      
      
    a| (OCoLC)852757497
    050
      
    4
    a| T57.6 .D373 2013
    082
    0
    4
    a| 658.2101156
    049
      
      
    a| MAIN
    100
    1
      
    a| Daskin, Mark S.
    245
    1
    0
    a| Network and Discrete Location h| [electronic resource] : b| Models, Algorithms, and Applications.
    250
      
      
    a| 2nd ed.
    260
      
      
    a| Hoboken : b| Wiley, c| 2013.
    300
      
      
    a| 1 online resource (536 pages)
    336
      
      
    a| text b| txt 2| rdacontent
    337
      
      
    a| computer b| c 2| rdamedia
    338
      
      
    a| online resource b| cr 2| rdacarrier
    505
    0
      
    a| Network and Discrete Location: Models, Algorithms, and Applications; Contents; Preface to the First and Second Editions; Acknowledgments; 1. Introduction to Location Theory and Models; 1.1 Introduction; 1.2 Key Questions Addressed by Location Models; 1.3 Example Problem Descriptions; 1.3.1 Ambulance Location; 1.3.2 Siting Landfills for Hazardous Wastes; 1.3.3 Summary; 1.4 Key Dimensions of Location Problems and Models; 1.4.1 Planar Versus Network Versus Discrete Location Models; 1.4.2 Tree Problems Versus General Graph Problems; 1.4.3 Distance Metrics; 1.4.4 Number of Facilities to Locate.
    505
    8
      
    a| 1.4.5 Static Versus Dynamic Location Problems1.4.6 Deterministic Versus Probabilistic Models; 1.4.7 Single- Versus Multiple-Product Models; 1.4.8 Private Versus Public Sector Problems; 1.4.9 Single- Versus Multiple-Objective Problems and Models; 1.4.10 Elastic Versus Inelastic Demand; 1.4.11 Capacitated Versus Uncapacitated Facilities; 1.4.12 Nearest Facility Versus General Demand Allocation Models; 1.4.13 Hierarchical Versus Single-Level Models; 1.4.14 Desirable Versus Undesirable Facilities; 1.5 ATaxonomy of Location Models; 1.5.1 Typology of Location Models; 1.5.2 A Simple Analytic Model.
    505
    8
      
    a| 1.6 SummaryExercises; 2. Review of Linear Programming; 2.1 Introduction; 2.2 The Canonical Form of a Linear Programming Problem; 2.3 Constructing the Dual of an LP Problem; 2.4 Complementary Slackness and the Relationships Between the Primal and the Dual Linear Programming Problems; 2.5 Solving a Linear Programming Problem in Excel; 2.6 The Transportation Problem; 2.7 The Shortest Path Problem; 2.7.1 The Shortest Path Problem in Excel; 2.7.2 The Shortest Path Problem in AMPL; 2.8 The Out-of-Kilter Flow Algorithm; 2.9 Integer Programming Problems; 2.10 Summary; Exercises.
    505
    8
      
    a| 3. An Overview of Complexity Analysis3.1 Introduction; 3.2 Basic Concepts and Notation; 3.3 Example Computation of an Algorithm's Complexity; 3.4 The Classes P and NP (and NP-Hard and NP-Complete); 3.5 Summary; Exercises; 4. Covering Problems; 4.1 Introduction and the Notion of Coverage; 4.2 The Set Covering Model; 4.3 Applications of the Set Covering Model; 4.4 Variants of the Set Covering Location Model; 4.5 The Maximum Covering Location Model; 4.5.1 The Greedy Adding Algorithm: A Heuristic Algorithm for Solving the Maximum Covering Location Model.
    505
    8
      
    a| 4.5.2 Lagrangian Relaxation: An Optimization-Based Heuristic Algorithm for Solving the Maximum Covering Location Model4.5.3 Other Solution Approaches and Example Results; 4.6 An Interesting Model Property or It Ain't Necessarily So; 4.7 The Maximum Expected Covering Location Model; 4.8 Summary; Exercises; 5. Center Problems; 5.1 Introduction; 5.2 Vertex P-Center Formulation; 5.3 The Absolute 1- and 2-Center Problems on a Tree; 5.3.1 Absolute 1-Center on an Unweighted Tree; 5.3.2 Absolute 2-Centers on an Unweighted Tree; 5.3.3 Absolute 1-Center on a Weighted Tree.
    500
      
      
    a| 5.4 The Unweighted Vertex P-Center Problem on a General Graph.
    520
      
      
    a| This Second Edition remains the only hands-on guide to using and developing facility location models. It offers a practice-oriented introduction to model-building methods and solution algorithms complete with software for solving classical problems of realistic size and end-of-chapter exercises to enhance reader understanding. The book introduces readers to the key classical location problems (covering, center, median, and fixed charge); discusses real-world extensions of the basic models used in locating; outlines a host of methodological tools for solving location models; and much more.
    650
      
    4
    a| Discrete location.
    650
      
    4
    a| Industrial location x| Mathematical models.
    650
      
    4
    a| Probabilistic models.
    655
      
    4
    a| Electronic books.
    740
    0
      
    a| Virtual Library of Virginia EBL DDA purchased title
    776
    0
    8
    i| Print version: a| Daskin, Mark S. t| Network and Discrete Location : Models, Algorithms, and Applications. d| Hoboken : Wiley, ©2013 z| 9780470905364
    856
    4
    0
    u| http://proxy.its.virginia.edu/login?url=http://viva.eblib.com/patron/FullRecord.aspx?p=1222108&userid=^u&conl=UVA&echo=1
    938
      
      
    a| EBL - Ebook Library b| EBLB n| EBL1222108
    994
      
      
    a| 92 b| VA@
    999
      
      
    w| WEB l| INTERNET m| UVA-LIB t| INTERNET

Availability

Google Preview

Read Online