Item Details

Print View

Static Data Association With a Terrain-Based Prior Density

Barker, Allen; Brown, Donald; Martin, Worthy
Format
Report
Author
Barker, Allen
Brown, Donald
Martin, Worthy
Abstract
We consider the problem of estimating the states of a static set of targets given a collection of densities, each representing the state of a single target. We assume there is no a-priori knowledge of which of the given densities represent common targets, but that a prior density for the target locations is available. For a two-dimensional location estimation problem we construct a prior density model based on known features of the terrain. For a simple Gaussian association-estimation algorithm using a prior density we consider when the prior is most effective in data association, or correlation, and when it is most effective in state estimation. We present some simulation results and discuss some issues involved in measuring algorithm performance and in the algorithm implementation. We briefly discuss extensions to higher dimensional state spaces and non-static models.
Language
English
Date Received
2012-10-30
Published
University of Virginia, Institute for Parallel Computation, 1994
Published Date
1994
Collection
Libra Open Repository
In CopyrightIn Copyright
▾See more
▴See less

Availability

Access Online