Item Details

Control-Theoretic Techniques and Thermal-RC Modeling for Accurate and Localized Dynamic Thermal Management

Skadron, Kevin; Abdelzaher, Tarek; Stan, Mircea
Format
Report
Author
Skadron, Kevin
Abdelzaher, Tarek
Stan, Mircea
Abstract
This paper proposes the use of formal feedback control theory as a way to implement adaptive techniques in the processor architecture. Dynamic thermal management (DTM) is used as a test vehicle, and variations of a PID controller (Proportional-Integral-Differential) are developed and tested for adaptive control of fetch "toggling." To accurately test the DTM mechanism being proposed, this paper also develops a thermal model based on lumped thermal resistances and thermal capacitances. This model is computationally efficient and tracks temperature at the granularity of individual functional blocks within the processor. Because localized heating occurs much faster than chip-wide heating, some parts of the processor are more likely to be "hot spots" than others. Experiments using Wattch and the SPEC2000 benchmarks show that the thermal trigger threshold can be set within 0.2 degrees of the maximum temperature and yet never enter thermal emergency. This cuts the performance loss of DTM by 65% compared to the previously described fetch toggling technique that uses a response of fixed magnitude.
Language
English
Date Received
20121029
Published
University of Virginia, Department of Computer Science, 2001
Published Date
2001
Collection
Libra Open Repository
Logo for In CopyrightIn Copyright

Availability

Access Online