Item Details

Inputs and Fluxes of Nitrogen in the Virginia Coastal Bays: Effects of Newly-Restored Seagrasses on the Nitrogen Cycle

Cole, Luke William
Thesis/Dissertation; Online
Cole, Luke William
McGlathery, Karen
Seagrasses are ecosystem engineers-providing nursery ground and refuge for fish and invertebrates, sediment stabilization, and regulate the nitrogen (N) cycle. Seagrasses worldwide are in decline, bringing about a shift in N dynamics in shallow coastal systems (Waycott et al. 2009). The decline of seagrasses is driven largely by the chronic increase in anthropogenic N (Nixon 1995), which triggers a state change where shallow coastal systems become dominated by epiphytes (Bulthuis & Woelkerling 1983) and algae (McGlathery 2001). This study used a land use-based N loading model to calculate the inputs of N to the Virginia coastal bays-a shallow coastal system characterized by a low human population density, low water nutrient concentrations, and the most successful seagrass (Zostera marina [L.]) restoration in the world. In addition, this study measured N fluxes across a restoration chronosequence to quantify the effects of restored seagrass on the N cycle. Using the N loading model, we determined that agricultural fertilizer was the dominant terrestrial N source, though deposition of rainfall to the surface of the bays was the largest overall source of N. On average, Virginia coastal bays received 7.2 x 10 4 kg N y -1 or 2.11 g N m -2 y -1 , markedly lower than most other shallow coastal waterways in temperate systems (Boynton et al. 1995, McGlathery 2007). Nitrogen fixation (N 2 fixation) rates were significantly higher in vegetated sediments-compared to bare sediment-and decreased with depth. Furthermore, the older seagrass meadow (8 years old; seeded in 2001) fixed significantly more N 2 than the younger meadow (3 years old; seeded in 2006) and bare sediment. N 2 fixation rates in the older meadow and bare sediment were comparable to other Z. marina and bare sediment systems, respectively. Denitrification (N 2 loss), however, was the dominant process. Denitrification rates increased as seagrass meadows aged, and were correlated to increases in sediment organic matter. The N removal capacity of bare sediment was half of the total N loading rate into the bays (1 g N m -2 y -1 ), and vegetated sediments removed 3.9–5.8 g N m -2 y -1 , supporting the concept of seagrass beds as a "nutrient sponge". Note: Abstract extracted from PDF text
Date Received
University of Virginia, Department of Environmental Sciences, PHD (Doctor of Philosophy), 2011
Published Date
PHD (Doctor of Philosophy)
Libra ETD Repository
Logo for In CopyrightIn Copyright


Read Online